[1] |
Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213. doi: 10.1016/S0025-5564(99)00030-9
|
[2] |
Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM Journal on Applied Mathematics,2001,62(1):58-69. doi: 10.1137/S0036139999359860
|
[3] |
Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[J].Applied Mathematics and Computation,2004,152(1):169-194. doi: 10.1016/S0096-3003(03)00554-X
|
[4] |
Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J].Mathematical and Computer Modelling,1997,25(5):85-107.
|
[5] |
LI Gui-hua,JIN Zhen.Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J].Chaos, Solitons and Fractals,2005,25(5):1177-1184. doi: 10.1016/j.chaos.2004.11.062
|
[6] |
Hethcote H W,Stech H W,Van den Driessche P.Periodicity and stability in epidemic models: A survey[A].In:Differential Equations and Applications in Ecology,Epidemics,and Population Problems[M].New York:Academic Press,1981,65-85.
|
[7] |
D'Onofrio Alberto.Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Mathematical Biosciences,2002,179(1):57-72. doi: 10.1016/S0025-5564(02)00095-0
|
[8] |
D'Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J].Applied Mathematics and Computation,2004,151(1):181-187. doi: 10.1016/S0096-3003(03)00331-X
|
[9] |
Fine P M.Vectors and vertical transmission: an epidemiologic perspective[J].Annals of the New York Academy of Sciences,1975,266(11):173-194. doi: 10.1111/j.1749-6632.1975.tb35099.x
|
[10] |
Busenberg S,Cooke K L,Pozio M A.Analysis of a model of a vertically transmitted disease[J].Journal of Mathematical Biology,1983,17(3):305-329.
|
[11] |
Busenberg S N,Cooke K L.Models of vertical transmitted diseases with sequenty-continuous dynamics[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,179-187.
|
[12] |
Cook K L,Busenberg S N.Vertical transmission diseases[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,189.
|
[13] |
LU Zhong-hua,CHI Xue-bin,CHEN Lan-sun.The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J].Mathematical and Computer Modelling,2002,36(9):1039-1057. doi: 10.1016/S0895-7177(02)00257-1
|
[14] |
D'Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,18(7):729-732. doi: 10.1016/j.aml.2004.05.012
|
[15] |
Nokes D, Swinton J.The control of childhood viral infections by pulse vaccination[J].IMA Journal Mathematics Applied Biology Medication,1995,12(1):29-53. doi: 10.1093/imammb/12.1.29
|
[16] |
ZENG Guang-zhao,CHEN Lan-sun.Complexity and asymptotical behavior of an SIRS epidemic model with proportional implse vaccination[J].Advances in Complex Systems,2005,8(4):419-431. doi: 10.1142/S0219525905000580
|
[17] |
Van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. doi: 10.1007/s002850000032
|
[18] |
Van den Driessche P, Watmough J. Epidemic solutions and endemic catastrophes[J].Fields Institute Communications,2003,36(1):247-257.
|
[19] |
Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96. doi: 10.1016/j.mbs.2004.01.003
|
[20] |
Takeuchi Yasuhiro,MA Wan-biao,Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J].Nonlinear Analysis,2000,42(6):931-947. doi: 10.1016/S0362-546X(99)00138-8
|
[21] |
MA Wan-biao,SONG Mei,Takeuchi Yasuhiro.Global stability of an SIR epidemic model with time delay[J].Applied Mathematics Letters,2004,17(10):1141-1145. doi: 10.1016/j.aml.2003.11.005
|
[22] |
JIN Zhen,MA Zhi-en.The stability of an SIR epidemic model with time delays[J].Mathematical Biosciences and Engineering,2006,3(1):101-109.
|
[23] |
Beretta Edoardo,Hara Tadayuki,MA Wang-bao,et al.Global asymptotic stability of an SIR epidemic model with distributed time delay[J].Nonlinear Analysis,2001,47(6):4107-4115. doi: 10.1016/S0362-546X(01)00528-4
|
[24] |
Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore:World Scientic,1989.
|
[25] |
LIU Xin-zhi,Teo Kok Lay,ZHANG Yi.Absolute stability of impulsive control systems with time delay[J].Nonlinear Analysis,2005,62(3):429-453. doi: 10.1016/j.na.2005.03.052
|
[26] |
KUANG Yang.Delay Differential Equations with Applications in Population Dynamics[M].San Diego, CA:Academic Press,Inc.1993.
|
[27] |
Cooke K L, Van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J].Journal of Mathematical Biology,1996,35(2):240-260. doi: 10.1007/s002850050051
|
[28] |
WANG Wen-di.Global Behavior of an SEIRS epidemic model with time delays[J].Applied Mathematics Letters,2002,15(4):423-428. doi: 10.1016/S0893-9659(01)00153-7
|