留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低重环境下液体非线性晃动的稳态响应

贺元军 马兴瑞 王本利

贺元军, 马兴瑞, 王本利. 低重环境下液体非线性晃动的稳态响应[J]. 应用数学和力学, 2007, 28(10): 1135-1145.
引用本文: 贺元军, 马兴瑞, 王本利. 低重环境下液体非线性晃动的稳态响应[J]. 应用数学和力学, 2007, 28(10): 1135-1145.
HE Yuan-jun, MA Xing-rui, WANG Ben-li. Stable Response of the Low-Gravity Liquid Non-Linear Sloshing in a Circle Cylindrical Tank[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1135-1145.
Citation: HE Yuan-jun, MA Xing-rui, WANG Ben-li. Stable Response of the Low-Gravity Liquid Non-Linear Sloshing in a Circle Cylindrical Tank[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1135-1145.

低重环境下液体非线性晃动的稳态响应

基金项目: 国防十五预研资助项目(41320020301)
详细信息
    作者简介:

    贺元军(1975- ),男,重庆云阳人,博士(联系人.Tel:+86-28-84803317;E-mail:hithyj@163.com).

  • 中图分类号: V415.4;O322

Stable Response of the Low-Gravity Liquid Non-Linear Sloshing in a Circle Cylindrical Tank

  • 摘要: 在俯仰激励作用下,圆柱贮箱中液体晃动存在平面运动、旋转运动和平面运动中的旋转运动等,而这些运动的稳定、不稳定区间的分界线与贮箱的半径、充液深度、重力强度、表面张力系数和晃动阻尼等基本系统参数有关.据此,首先建立了液体非线性晃动的微分方程组,并借助变分原理建立了液体压力体积分形式的Lagrange函数;然后将速度势函数在自由液面处作波高函数的级数展开,通过变分从而导出自由液面运动学和动力学边界条件非线性方程组;最后用多尺度法求解非线性方程组,就重力强度对圆柱形贮箱中液体非线性晃动的全局稳态响应的影响进行了详细的理论分析,并发现系统软硬特性的变化、跳跃和滞后等非线性现象.
  • [1] 马兴瑞,王本利,苟兴宇,等.航天器动力学——若干问题进展及应用[M].北京:科学出版社,2001,1-29.
    [2] Hutton R E. An investigation of resonant, nonlinear, nonplanar free surface oscillations of a fluid[R]. NASA TN D-1870, 1963
    [3] GOU Xing-yu, MA Xing-rui,WANG Ben-li,et al.Synchronous Hopf bifurcation and damping osmosis phenomena of a liquid-spacecraft nonlinear coupling system[J].AIAA J,2001,39(2):225-232. doi: 10.2514/2.1317
    [4] Komatsu K.Nonlinear sloshing analysis of liquid in tanks with arbitrary geometries[J].Internt J Nonlinear Mechanics,1987,22(3):193-207. doi: 10.1016/0020-7462(87)90002-3
    [5] YIN Li-zhong, WANG Ben-li,MA Xing-rui,et al.The nonlinear sloshing of liquid in tank with pitching[J].Transaction of ASME, J Appl Mech,1999,66(4):1032-1034. doi: 10.1115/1.2791777
    [6] Utsumi M. Low-gravity propellant slosh analysis using spherical coordinates[J].Journal of Fluids and Structures,1998,12:57-83. doi: 10.1006/jfls.1997.0125
    [7] Utsumi M. Development of mechanical models for propellant sloshing in teardrop tanks[J].Journal of Spacecraft and Rockets,2000,37(5):597-603. doi: 10.2514/2.3632
    [8] Snyder H A. Sloshing in microgravity[J].Cryogenics,1999,39:1047-1055. doi: 10.1016/S0011-2275(99)00120-4
    [9] Peterson L D, Crawley E F,Hansman R J. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid[R]. AIAA paper 88-2470, Apr 1988.
    [10] Van Schoor M C,Crawley E F. Nonlinear forced-response characteristics of contained fluids in microgravity[J].Journal of Spacecraft and Rockets,1995,32(3):521-532. doi: 10.2514/3.26646
    [11] 岳宝增,刘延柱,王照林.三维液体大幅晃动及其抑制的数值模拟[J].上海交通大学学报,2000,34(8):1036-1039.
    [12] Luke J C. A variational principle for a fluid with a free surface[J].Journal of Fluid Mechanics,1967,27(2):395-397. doi: 10.1017/S0022112067000412
    [13] Waterhouse D D.Resonant sloshing near a critical depth[J].Journal of Fluid Mechanics,1994,281:313-318. doi: 10.1017/S0022112094003125
  • 加载中
计量
  • 文章访问数:  2837
  • HTML全文浏览量:  86
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-04-04
  • 修回日期:  2007-07-27
  • 刊出日期:  2007-10-15

目录

    /

    返回文章
    返回