留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于Banach空间非扩张半群的强收敛定理

张石生 杨莉 柳京爱

张石生, 杨莉, 柳京爱. 关于Banach空间非扩张半群的强收敛定理[J]. 应用数学和力学, 2007, 28(10): 1146-1156.
引用本文: 张石生, 杨莉, 柳京爱. 关于Banach空间非扩张半群的强收敛定理[J]. 应用数学和力学, 2007, 28(10): 1146-1156.
ZHANG Shi-sheng, YANG Li, LIU Jing-ai. On the Strong Convergence Theorems for Nonexpansive Semi-Groups in Banach Spaces[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1146-1156.
Citation: ZHANG Shi-sheng, YANG Li, LIU Jing-ai. On the Strong Convergence Theorems for Nonexpansive Semi-Groups in Banach Spaces[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1146-1156.

关于Banach空间非扩张半群的强收敛定理

基金项目: 四川省自然科学基金资助项目(2005A1321)
详细信息
    作者简介:

    张石生(1934- ),男,云南曲靖人,教授(联系人.E-mail:sszhang_1@yahoo.com.cn).

  • 中图分类号: O177.91

On the Strong Convergence Theorems for Nonexpansive Semi-Groups in Banach Spaces

  • 摘要: 在Banach空间框架下,建立了几个关于非扩张半群显式迭代序列的强收敛定理.所得结果不仅推广和改进了Shioji-Takahashi,Suzuki,Xu以及Aleyner-Reich等人的相应结果,而且还部分肯定地回答了Suzuki和Xu提出的两个公开问题.
  • [1] Browder F E.Fixed point theorems for noncompact mappings in Hilbert space[J].Proc Nat Acad Sci USA,1965,53:1272-1276. doi: 10.1073/pnas.53.6.1272
    [2] Reich S.Strong convergence theorems for resolvents of accretive operators in Banach spaces[J].J Math Anal Appl,1980,75:287-292. doi: 10.1016/0022-247X(80)90323-6
    [3] Shioji N,Takahashi W.Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces[J].Nonlinear Anal,1998,34:87-99. doi: 10.1016/S0362-546X(97)00682-2
    [4] Suzuki T.On strong convergence to a common fixed point of nonexpansive semigroup in Hilbert spaces[J].Proc Amer Math Soc,2003,131(7):2133-2136. doi: 10.1090/S0002-9939-02-06844-2
    [5] Xu H K.A strong convergence theorem for contraction semigroups in Banach spaces[J].Bull Austral Math Soc,2005,72:371-379. doi: 10.1017/S000497270003519X
    [6] Aleyner A,Reich S.An explicit construction of sunny nonexpansive retractions in Banach spaces[J].Fixed Point Theory and Applications,2005,3:295-305.
    [7] Xu H K.Strong convergence of an iterative method for nonexpansive and accretive operators[J].J Math Anal Appl,2006,314:631-643. doi: 10.1016/j.jmaa.2005.04.082
    [8] Goebel K,Kirk W A.Topics in Metric Fixed Point Theory[M].Cambridge:Cambridge University Press,1990.
    [9] Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden:Noordhoff,International Publishing,1976.
    [10] Bruck R E.Nonexpansive projections on subsets of Banach spaces[J].Pacific J Math,1973,47:341-355.
    [11] Reich S.Asymptotic behavior of contractions in Banach spaces[J].J Math Anal Appl,1973,44:57-70. doi: 10.1016/0022-247X(73)90024-3
    [12] Browder F E.Convergence theorems for sequences of nonlinear operators in Banach spaces[J].Math Z,1967,100:201-225. doi: 10.1007/BF01109805
    [13] Goebel K,Reich S.Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings[M].New York:Marcel Dekker,1984.
    [14] Liu L S.Ishikawa and Mann iterarive processes with errors for nonlinear strongly accretive mappings in Banach space[J].J Math Anal Appl,l995,194:114-125.
    [15] Chang S S.On Chidume's open questions and approximation solutions of multivalued strongly accretive mappings equations in Banach spaces[J].J Math Anal Appl,1977,216:94-111.
  • 加载中
计量
  • 文章访问数:  2703
  • HTML全文浏览量:  137
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-11
  • 修回日期:  2007-08-08
  • 刊出日期:  2007-10-15

目录

    /

    返回文章
    返回