留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抢占型优先服务机制下多类排队网络的扩散逼近

戴万阳

戴万阳. 抢占型优先服务机制下多类排队网络的扩散逼近[J]. 应用数学和力学, 2007, 28(10): 1185-1196.
引用本文: 戴万阳. 抢占型优先服务机制下多类排队网络的扩散逼近[J]. 应用数学和力学, 2007, 28(10): 1185-1196.
DAI Wan-yang. Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1185-1196.
Citation: DAI Wan-yang. Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1185-1196.

抢占型优先服务机制下多类排队网络的扩散逼近

基金项目: 国家自然科学基金资助项目(10371053)
详细信息
    作者简介:

    戴万阳(1963- ),男,江苏盐城人,教授,博士(E-mail:nan5lu8@netra.nju.edu.cn).

  • 中图分类号: O211;O226

Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline

  • 摘要: 证明一个满负荷交通极限定理以证实在抢占型优先服务机制下多类排队网络的扩散逼近,进而为该系统提供有效的随机动力学模型.所研究的排队网络典型地出现在现代通讯系统中高速集成服务分组数据网络,其中包含分组数据包的若干交通类型,每个类型涉及若干工作处理类(步骤),并且属于同一交通类型的工作在可能接受服务的每一个网站被赋予相同的优先权等级,更进一步地,在整个网络中,属于不同交通类型的分组数据包之间无交互路由.
  • [1] Dai W.A heavy traffic limit theorem for queueing networks with finite capacity[A].Presentation With Preprint at INFORMS Applied Probability Conference[C].Atlanta, USA,1995.
    [2] Dai W. Brownian approximations for queueing networks with finite buffers: modeling,heavy traffic analysis and numerical implementations[D].Ph D Thesis.School of Mathematics, Georgia Institute of Technology, 1996. Aslo published in UMI Dissertation Services, A Bell & Howell Company, 300 N.Zeeb Road, Ann Arbor,Michican 48106, USA,1997.
    [3] Dai J G,Dai W.A heavy traffic limit theorem for a class of open queueing networks with finite buffers[J].Queueing Systems,1999,32(1/3),5-40.
    [4] Reiman M I.Open queueing networks in heavy traffic [J].Mathematics of Operations Research,1984,9(3):441-458. doi: 10.1287/moor.9.3.441
    [5] Bramson M. State space collapse with application to heavy traffic limits for multiclass queueing networks[J].Queueing Systems,1998,30(1/2):89-148. doi: 10.1023/A:1019160803783
    [6] Bramson M.State space collapse for queueing networks[A].Proceedings of the International Congress of Mathematicians[C].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,,213-222.
    [7] Williams R J.Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse[J].Queueing Systems: Theory and Applications,1998,30(1/2):27-88. doi: 10.1023/A:1019108819713
    [8] Williams R J.Reflecting diffusions and queueing networks[A].Proceedings of the International Congress of Mathematicians[M].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,321-330.
    [9] Bramson M,Dai J.G. Heavy traffic limits for some queueing networks[J].Annals of Applied Probability,2001,11(1):49-90. doi: 10.1214/aoap/998926987
    [10] Chen H,Zhang H. A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service displines[J].Queueing Systems,2000,34(1/4):237-268. doi: 10.1023/A:1019113204634
    [11] Chen H,Zhang H.Diffusion approximations for some multiclass queueing networks with FIFO service disciplines[J].Mathematics of Operations Research,2000,25(4):679-707. doi: 10.1287/moor.25.4.679.12115
    [12] Harrison J M,Williams R J.Multidimensional reflected Brownian motions having exponential stationary distributions[J].Annals of Probability,1987,15(1):115-137. doi: 10.1214/aop/1176992259
    [13] Dai J G,Harrison J M.Reflected Brownian motion in an orthant: numerical methods for steady-state analysis[J].Annals of Applied Probability,1992,2(1):65-86. doi: 10.1214/aoap/1177005771
    [14] Shen X,Chen H,Dai J G,et al.The finite element method for computing the stationary distribution of an SRBM in a hypercube with applications to finite buffer queueing networks[J].Queueing Systems,2002,42(1):33-62. doi: 10.1023/A:1019942711261
    [15] Dai J G,Wang Y.Nonexistence of Brownian models of certain multicalss queueing networks[J].Queueing Systems,1993,13(1/3):41-46. doi: 10.1007/BF01158928
    [16] Williams R J.An invariance principle for semimartingale reflecting Brownian motions in an orthant[J].Queueing Systems,1998,30(1/2):5-25. doi: 10.1023/A:1019156702875
    [17] Ethier S N,Kurtz T G.Markov Processes: Charaterization and Convergence[M]. New York:Wiley,1986.
    [18] Bernard A,Kharroubi A El.Regulation deterministes et stochastiques dans le premier “orthant” de Rn[J].Stochastics Stochastics Rep,1991,34(3/4):149-167.
    [19] Harrison J M,Reiman M I.Reflected Brownian motion on an orthant[J].Annals of Probability,1981,9(2):302-308. doi: 10.1214/aop/1176994471
  • 加载中
计量
  • 文章访问数:  2503
  • HTML全文浏览量:  121
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-03
  • 修回日期:  2007-07-11
  • 刊出日期:  2007-10-15

目录

    /

    返回文章
    返回