Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth
-
摘要: 讨论了有界光滑区域上一类p-Laplace方程,非线性项具奇对称性且在无穷远为极限次临界增长.证明了变分泛函在大范围内满足推广的Palais-Smale条件,构造了变分泛函的一列临界值,进而得到了无穷多个弱解的存在性,对应泛函的能量趋于正无穷.所得到的结果推广了次临界增长的情形.
-
关键词:
- p-Laplace算子 /
- 极限次临界增长 /
- 集中紧性原理 /
- 广义的Palais-Smale条件 /
- 渐近极小极大值原理
Abstract: A class of p-Laplacian boundary problem on a bounded smooth domain was discussed.The nonlinearity is odd symmetric and limit sub-critical gro wth at infinite.A sequence of critical values of the variational functional was constructed after the generalized Palais-Smale condition was verified.It is obtained that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite.The result is a generalization of the similar problem in case of subcritical. -
[1] 刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报,2003,46(4):625-630. [2] Garcia Azorero J P,Peral Alonso I.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].Trans Amer Math Soc,1991,323(2):877-895. [3] 冉启康,方爱农.RN上临界增长的椭圆方程无穷多解的存在性[J].数学学报,2002,45(4):773-782. [4] Struwe M.Variational Methods[M].Beijing:Spriger-Verlag,1996. [5] Lion P L.The concentration-compactness principle in the calculus of Variation, the limit case[J].part 1,2.Rev Mat Iberoamericana,1985,1(1):145-201;1(2):45-121. [6] 耿堤,杨舟.临界增长拟线性椭圆型方程中p-Laplace算子的弱连续性[J].华南师范大学学报, 2003,(3):10-13. [7] Costa D G,Miyagaki O H.Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[J].J Math Anal Appl,1995,193(2):737-755. doi: 10.1006/jmaa.1995.1264 [8] Brézis H,Nirenberg L.Remarks on finding critical points[J].Comm Pure Appl Math,1991,49(5):939-963. [9] Triebel H.Interpolation Theory, Function Spaces, Differential Operators[M].Amsterdam:North-Holland Pub Co,1978. [10] Suzuki T.Generalized distance and existence theorems in complete metric spaces[J].J Math Anal Applic,2001,253(2):440-458. doi: 10.1006/jmaa.2000.7151
计量
- 文章访问数: 2684
- HTML全文浏览量: 179
- PDF下载量: 1205
- 被引次数: 0