留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面射流中纳米粒子积聚的矩方法

于明州 林建忠 陈丽华

于明州, 林建忠, 陈丽华. 平面射流中纳米粒子积聚的矩方法[J]. 应用数学和力学, 2007, 28(11): 1287-1295.
引用本文: 于明州, 林建忠, 陈丽华. 平面射流中纳米粒子积聚的矩方法[J]. 应用数学和力学, 2007, 28(11): 1287-1295.
YU Ming-zhou, LIN Jian-zhong, CHEN Li-hua. Nanoparticle Coagulation in a Planar Jet via Moment Method[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1287-1295.
Citation: YU Ming-zhou, LIN Jian-zhong, CHEN Li-hua. Nanoparticle Coagulation in a Planar Jet via Moment Method[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1287-1295.

平面射流中纳米粒子积聚的矩方法

基金项目: 科技部重大基础研究前期研究专项资助项目(2005CCA06900)
详细信息
    作者简介:

    林建忠(联系人.Tel:+86-571-87952882;Fax:+86-571-87951464;E-mail:jzlin@sfp.zju.edu.cn).

  • 中图分类号: O359

Nanoparticle Coagulation in a Planar Jet via Moment Method

  • 摘要: 应用大涡模拟方法求解平面湍射流场,矩方法求解纳米粒子的一般动力学方程.通过对每种情况3 000个时间步的平均,得到了Schmidt数和Damkohler数对纳米粒子动力学特性的影响.结果发现, 当气体参数不变时,Schmidt数的变化只对直径小于1 nm的颗粒数密度的分布产生影响.直径小的颗粒其颗粒数密度沿流动方向下降迅速,而具有大Schmidt数的颗粒,沿横向的分布较窄.较小的颗粒容易发生积聚和扩散,并且体积增长较快,因而颗粒多分散性较为明显.小的颗粒积聚时间尺度能增强颗粒的碰撞和积聚频率,导致颗粒尺寸迅速增大.Damkohler数越大,颗粒的多分散也越明显.
  • [1] Yu M Z,Lin J Z,Chen L H.Large eddy simulation of a planar jet flow with nanoparticle coagulation[J].Acta Mechanica Sinica,2006,22(4):293-300. doi: 10.1007/s10409-006-0011-z
    [2] Miller S E, Garrick S C.Nanoparticle coagulation in a planar jet[J].Aerosol Sci Technol,2004,38(1):79-89. doi: 10.1080/02786820490247669
    [3] Garrick S C, Lehtinen K E J,Zachariah M R.Nanoparticle coagulation via a Navier-Stokes/nodal methodology: evolution of the particle field[J].J Aerosol Sci,2006,37(5):555-576. doi: 10.1016/j.jaerosci.2005.04.010
    [4] Lin J Z, Chan T L,Liu S,et al.Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J].Internat J Nonlinear Sci Numer Simul,2007,8(1):45-54.
    [5] Smoluchowski V.Versuch einer mathematischen theorie der Koagulationskinetik kollider losungen[J].Z Phys Chem,1917,92:129-168.
    [6] Frenklach M.Dynamics of discrete distribution for smoluchowski coagulation model[J].J Colloid Interface Sci,1985,108(1):237-242. doi: 10.1016/0021-9797(85)90256-5
    [7] Hulbert H M, Katz S.Some problems in particle technology: a statistical mechanical formulation[J].Chem Eng Sci,1964,19(8):555-574. doi: 10.1016/0009-2509(64)85047-8
    [8] Smith E J,Jordan L M.Mathematical and graphical interpretation of the lognormal law for particle size distribution analysis[J].J Colloid Interface Sci,1964,19(6):549-559.
    [9] Frenklach M, Harris S J.Aerosol dynamics modeling using the method of moments[J].J Colloid Interface Sci,1987,118(11):252-261. doi: 10.1016/0021-9797(87)90454-1
    [10] Friedlander S K.Dynamics of aerosol formation by chemical reaction[J].Ann NY Acad Sci,1983,404(1):354-364. doi: 10.1111/j.1749-6632.1983.tb19497.x
    [11] Pratsinis S E.Simultaneous nucleation, condensation, and coagulation in aerosol reactor[J].J Colloid Interface Sci,1988,124(2):416-417. doi: 10.1016/0021-9797(88)90180-4
    [12] McGraw R.Description of aerosol dynamics by the quadrature method of moments[J].Aerosol Sci Technol,1997,27(2):255-265. doi: 10.1080/02786829708965471
    [13] Settumba N,Garrick S C. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method[J].J Aerosol Sci,2003,34(1):149-167. doi: 10.1016/S0021-8502(02)00147-7
    [14] Talukdar S S,Swihart M T.Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods[J].J Aerosol Sci,2004,35(7):889-908. doi: 10.1016/j.jaerosci.2004.02.004
    [15] Diemer R B,Olson J H. A moment methodology for coagulation and breakage problems: Part 1-analytical solution of the steady-state population balance[J].Chem Eng Sci,2002,57(12):2193-2209. doi: 10.1016/S0009-2509(02)00111-2
    [16] Pratsinis S E,Kim K S.Particle coagulation, diffusion and thermophoresis in laminar tube flows[J].J Aerosol Sci,1989,20(1):101-111. doi: 10.1016/0021-8502(89)90034-7
    [17] Pyykonen J, Jokiniemi J. Computational fluid dynamics based sectional aerosol modeling schemes[J].J Aerosol Sci,2000,31(5):531-550. doi: 10.1016/S0021-8502(99)00546-7
    [18] Terry D A, McGraw R,Rangel R H. Method of moments solution for a laminar flow aerosol reactor model[J].Aerosol Sci Technol,2001,34(4):353-362.
    [19] Smagorinsky J.General circulation experiments with the primitive equation[J].Mon Weather Rev,1963,91(3):99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [20] Lilly D K.A proposed modification of the Germano subgrid scale closeure method[J].Phys Fluids A,1992,4(3):633-635. doi: 10.1063/1.858280
    [21] Friedlander S K.Smoke,Dust and Haze: Fundamentals of Aerosol Behavior[M].New York,N Y:Wiley,1977.
    [22] Suh S M, Zachariah M R,Girshick S L.Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics[J].J Vac Sci Technol A,2001,19(3):940-951. doi: 10.1116/1.1355757
  • 加载中
计量
  • 文章访问数:  2575
  • HTML全文浏览量:  119
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-11-01
  • 修回日期:  2007-07-16
  • 刊出日期:  2007-11-15

目录

    /

    返回文章
    返回