留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类二次KdV类型水波方程的行波解

龙瑶 李继彬 芮伟国 何斌

龙瑶, 李继彬, 芮伟国, 何斌. 一类二次KdV类型水波方程的行波解[J]. 应用数学和力学, 2007, 28(11): 1296-1306.
引用本文: 龙瑶, 李继彬, 芮伟国, 何斌. 一类二次KdV类型水波方程的行波解[J]. 应用数学和力学, 2007, 28(11): 1296-1306.
LONG Yao, LI Ji-bin, RUI Wei-guo, HE Bin. Travelling Wave Solutions for a Hight Order Wave Equation of KdV Type[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1296-1306.
Citation: LONG Yao, LI Ji-bin, RUI Wei-guo, HE Bin. Travelling Wave Solutions for a Hight Order Wave Equation of KdV Type[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1296-1306.

一类二次KdV类型水波方程的行波解

基金项目: 国家自然科学基金资助项目(10231020);云南省自然科学基金资助项目(2003A0018M);云南省教育厅科学研究基金重点资助项目(5Z0071A)
详细信息
    作者简介:

    龙瑶(1957- ),女,云南西盟人,教授(联系人.Tel:+86-873-3699239;E-mail:yaolong04@163.com).

  • 中图分类号: O175.12

Travelling Wave Solutions for a Hight Order Wave Equation of KdV Type

  • 摘要: 应用平面动力系统理论研究了一类非线性KdV方程的行波解的动力学行为.在参数空间的不同区域内,给出了系统存在孤立波解,周期波解,扭子和反扭子波解的充分条件,并计算出所有可能的精确行波解的参数表示.
  • [1] Tzirtzilakis E,Xenos M,Marinakis V,et al.Interactions and stability of solitary waves in shallow water[J].Chaos, Solitons and Fractals,2002,14(1):87-95. doi: 10.1016/S0960-0779(01)00211-9
    [2] Tzirtzilakis E,Marinakis V,Apokis C,et al.Soliton-like solutions of higher order wave equations of the Korteweg-de-Vries type[J].J Math Phys,2002,43(12):6151-6161. doi: 10.1063/1.1514387
    [3] Fokas A s.On a class of physically important integralequations[J].Physica D,1995,87(1/4):145-150. doi: 10.1016/0167-2789(95)00133-O
    [4] LONG Yao,RUI Wei-guo,HE Bin.Travelling wave solutions for a higher order wave equations of KdV type (Ⅰ)[J].Chaos, Solitons and Fractals,2005,23(2):469-475. doi: 10.1016/j.chaos.2004.04.027
    [5] LI Ji-bin,DAI Hui-hui.On the studies of sigular travelling wave equations[A].Dynamical System Approach[C].Beijing:Science Press, 2007.
    [6] Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981.
    [7] Guckenheimer J,Holmes P J.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag, 1983.
    [8] Perko L.Differential Equations and Dynamical Systems[M].New York:Springer-Verlag,1991.
    [9] Li Y A,Olver P J.Convergence of solitary-wave solutionsin a perturbed bi-Hamiltonian dynamical system Ⅰ:Compactons and peakons[J].Discrete and Continuous Dynamical Systems,1997,3(3):419-432. doi: 10.3934/dcds.1997.3.419
    [10] Li Y A,Olver P J.Convergence of solitary-wave solutionsin a perturbed bi-Hamiltonian dynamical system Ⅱ: Complexanalytic behaviour and convergence to non-analytic solutions[J].Discrete and Continuous Dynamical Systems,1998,4(1):159-191.
    [11] LI Ji-bin,LIU Zhen-rong.Smooth and non-smooth travelling waves in a nonlinearly dispersive equation[J].Appl Math Modelling,2000,25(1):41-56. doi: 10.1016/S0307-904X(00)00031-7
    [12] LI Ji-bin,LIU Zhen-rong.Travelling wave solutions for a class of nonlinear dispersive equations[J].Chin Ann of Math,2002,23B(3):397-418.
  • 加载中
计量
  • 文章访问数:  3009
  • HTML全文浏览量:  168
  • PDF下载量:  775
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-02-28
  • 修回日期:  2007-09-17
  • 刊出日期:  2007-11-15

目录

    /

    返回文章
    返回