[2]付宝连. 弹性力学中的能量原理及其应用[M]. 北京: 科学出版社, 2004.(FU Baolian. The Principle of Energy in Elasticity and Its Application[M]. Beijing: Science Press, 2004.(in Chinese))
|
付宝连. 弯曲薄板功的互等新理论[M]. 北京: 科学出版社, 2003.(FU Baolian. A New Theory of Reciprocal Work for Bending Thin Plates[M]. Beijing: Science Press, 2003.(in Chinese))
|
[3]付宝连. 弯曲矩形板的广义位移原理[M]. 北京: 科学出版社, 2006.(FU Baolian. The Generalized Displacement Principle of Bending Rectangular Plate[M]. Beijing: Science Press, 2006.(in Chinese))
|
[4]付宝连. 功的互等理论及其应用[M]. 北京: 科学出版社, 2007.(FU Baolian. The Reciprocal Theory of Work and Its Application[M]. Beijing: Science Press, 2007.(in Chinese))
|
[5]付宝连. 弹性力学混合变量的变分原理及其应用[M]. 北京: 科学出版社, 2010.(FU Baolian. The Variational Principle of Mixed Variables in Elasticity and Its Application[M]. Beijing: Science Press, 2010.(in Chinese))
|
[6]付宝连. 弯曲厚矩形板功的互等定理及其应用[M]. 北京: 科学出版社, 2014.(FU Baolian. Reciprocity Theorem of Bending Thick Rectangular Plate Work and Its Application[M]. Beijing: Science Press, 2014.(in Chinese))
|
[7]钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wanxie. New System for Solving Elastic Mechanics[M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
|
[8]付宝连. 有限位移理论线弹性动力学二类和三类混合变量的最小势作用量原理和驻值余作用量原理及其应用[J]. 应用数学和力学, 2017,38(12): 1359-1376.(FU Baolian. Principles of minimum potential action and stationary complementary action with dual and triple mixed variables for linear elastodynamics of finite displacement theory and the application[J]. Applied Mathematics and Mechanics,2017,38(12): 1359-1376.(in Chinese))
|
[9]付宝连. 有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用[J]. 应用数学和力学, 2017,38(11): 1251-1268.(FU Baolian. Variational principles for dual and triple mixed variables of linear elasticity with finite displacements and the application[J]. Applied Mathematics and Mechanics,2017,38(11): 1251-1268.(in Chinese))
|
[10]付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(10): 1019-1034.(FU Baolian. The reciprocal theorem for the finite displacement theory and its application[J]. Applied Mathematics and Mechanics,2015,36(10): 1019-1034.(in Chinese))
|
[11]付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(5): 523-538.(FU Baolian. Corrected reciprocal theorem for 3D linear elasticity and its application[J]. Applied Mathematics and Mechanics,2015,36(5): 523-538.(in Chinese))
|
[12]付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Baolian. Corrected reciprocal theorem of works for bending thin plates and its application[J]. Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
|
[13]付宝连. 修正的功的互等定理[J]. 燕山大学学报, 2005,29(3): 189-195.(FU Baolian. Modified theorem of reciprocal works[J]. Journal of Yanshan University,2005,29(3): 189-195.(in Chinese))
|
[14]付宝连. 有限变形非线性的变形能原理及功的互等定理与变分原理的关系[J]. 燕山大学学报, 2002,26(1): 4-6.(FU Baolian. Relations between deformation energy theorem and reciprocal theorem and variational principles in non-linear elasticity with finite displacements[J]. Journal of Yanshan University,2002,26(1): 4-6.(in Chinese))
|
[15]付宝连. 应用功的互等定理法求解立方体的位移解[J]. 应用数学和力学, 1989,10(4): 297-308.(FU Baolian. Application of the method of the reciprocal theorem to finding displacement solutions of cubes[J]. Applied Mathematics and Mechanics,1989,10(4): 297-308.(in Chinese))
|
[16]付宝连. 应用功的互等定理求解具有复杂边界条件的矩形板的挠曲面方程[J]. 应用数学和力学, 1982,3(3): 315-325.(FU Baolian. Applications of reciprocal theorem to solving the equations of deflection surface of rectangular plates with various edge conditions[J]. Applied Mathematics and Mechanics,1982,3(3): 315-325.(in Chinese))
|
[17]徐小明, 杨迪雄. 关于修正的功的互等定理的讨论[J]. 应用数学和力学, 2016,37(9): 993-998.(XU Xiaoming, YANG Dixiong. Discussion on the modified reciprocal theorem of works[J]. Applied Mathematics and Mechanics, 2016,37(9): 993-998.(in Chinese))
|