留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转流动的低模分析及仿真研究

王贺元 崔进

王贺元, 崔进. 旋转流动的低模分析及仿真研究[J]. 应用数学和力学, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342
引用本文: 王贺元, 崔进. 旋转流动的低模分析及仿真研究[J]. 应用数学和力学, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342
WANG He-yuan, CUI Jin. Low-Dimensional Analysis and Numerical Simulation of Rotating Flow[J]. Applied Mathematics and Mechanics, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342
Citation: WANG He-yuan, CUI Jin. Low-Dimensional Analysis and Numerical Simulation of Rotating Flow[J]. Applied Mathematics and Mechanics, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342

旋转流动的低模分析及仿真研究

doi: 10.21656/1000-0887.360342
基金项目: 国家自然科学基金(11572146;11526105)
详细信息
    作者简介:

    王贺元(1963—),男,博士(通讯作者. E-mail: wangheyuan6400@sina.com);崔进(1987—),女,硕士(E-mail: cuij@sina.com).

  • 中图分类号: O175.1;O192;O193

Low-Dimensional Analysis and Numerical Simulation of Rotating Flow

Funds: The National Natural Science Foundation of China(11572146;11526105)
  • 摘要: 为了探讨Couette-Taylor流从层流到湍流过渡的方式以及流动发展到湍流之后混沌吸引子的某些特征等问题,采用低模分析方法研究了Couette-Taylor流的部分动力学行为及仿真问题,讨论了Couette-Taylor流三模态类Lorenz型方程组的动力学行为,包括定态的失稳、极限环的出现、分岔与混沌的演变和全局稳定性分析等。通过线性稳定性分析和数值模拟等方法给出了此三维模型分岔与混沌等动力学行为及其演化历程,并借此解释了Couette-Taylor流试验中观察到的部分涡流的演化过程.基于系统的分岔图、Lyapunov指数谱、功率谱、Poincaré(庞加莱)截面和返回映射等揭示了系统混沌行为的普适特征.
  • [1] 陈奉苏, 谢定裕. Couette流的稳定性的一个典型研究[J]. 应用数学与计算数学学报, 1987,1(2): 22-33.(CHEN Feng-su, Hsien D Y. A model study of stability of Couette flow[J]. Communication on Applied Mathematics and Computation,1987,1(2): 22-33.(in Chinese))
    [2] WANG He-yan. Lorenz systems for the incompressible flow between two concentric rotating,cylinders[J]. Journal of Partial Differential Equations,2010,23(3): 209-221.
    [3] 王贺元. Couette-Taylor流三模系统的混沌行为及其仿真[J]. 数学物理学报, 2015,35(2): 769-779.(WANG He-yuan. The chaos behavior and simulation of three model systems of Couette-Taylor flow[J]. Acta Mathematica Scientia,2015,35(2): 769-779.(in Chinese))
    [4] Gassa Feugainga C M, Crumeyrollea O, Yangb K S, et al. Destabilization of the Couette-Taylor flow by modulation of the inner cylinder rotation[J]. European Journal of Mechanics-B/Fluids, 2014,44: 82-87.
    [5] Ostilla R, Richard J A M, Siegfried Grossmann S. Optimal Taylor-Couette flow: direct numerical simulations[J]. Journal of Fluid Mechanics,2013,719: 14-46.
    [6] WANG He-yuan. Dynamical behaviors and numerical simulation of Lorenz systems for the incompressible flow between two concentric rotating cylinders[J]. International Journal of Bifurcation and Chaos,2012,22(5): 45-53.
    [7] Chossat P, Tooss G. The Couette-Taylor Problem [M]. New York: Springer-Verlag, 1994.
    [8] Swinney H L, Gollub J P. Hydrodynamic, Instablilities and the Transition to Turbulence [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1981: 139-180.
    [9] Taylor G I. Stability of a viscons liquid contained between two rotating cylinders[J]. Philosophical Transactions of the Royal Society of London,1923,223: 289-343.
    [10] Thomas D G, Khomami B, Sureshkumar R. Nonlinear dynamics of viscoelastic Taylor-Couette flow, effect of elasticity on pattern selection, molecular conformation and drag[J]. Journal of Fluid Mechanics,2009,620: 353-382.
    [11] Anderreck C D, Liu S S, Swinney H L. Flow regimes in a circular Couette system with independent rotating cylinders[J]. Journal of Fluid Mechanics,1986,164: 155-183.
    [12] Meseguera A, Avilab M, Mellibovskyc F, et al. Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries[J]. The European Physical Journal Special Topics, 2007,146(1): 249-259.
    [13] 张继锋, 邓子辰, 张凯. 结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学, 2015,36(4):378-385.(ZHANG Ji-feng, DENG Zi-chen, ZHANG Kai. An improved precise Runge-Kutta method for structural dynamic equations[J]. Applied Mathematics and Mechanics,2015,36(4): 378-385.(in Chinese))
    [14] Marsden J E, McCracken M.The Hopf Bifurcation and Its Applications [M]. New York : Springer-Verlag, 1976.
    [15] 谢应齐. 非线性动力学数学方法[M]. 北京: 气象出版社, 2001.(XIE Ying-qi. Mathematical Method of Nolinear Dynamics [M]. Beijing: Meteorological Press, 2001.(in Chinese))
    [16] 李开泰, 马逸尘. 数理方程HILBERT空间方法[M]. 西安: 西安交通大学出版社, 1992: 359-370.( LI Kai-tai, MA Yi-chen. The HILBERT Space Method of Math and Physics Equations [M]. Xi’an: Xi’an Jiaotong University Press, 1992: 359-370.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  294
  • PDF下载量:  1489
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 修回日期:  2017-05-24
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回