留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性控制的分数阶混沌系统的对偶投影同步

张玮玮 吴然超

张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016, 37(7): 710-717. doi: 10.21656/1000-0887.360356
引用本文: 张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016, 37(7): 710-717. doi: 10.21656/1000-0887.360356
ZHANG Wei-wei, WU Ran-chao. Dual Projective Synchronization of Fractional-Order Chaotic Systems With a Linear Controller[J]. Applied Mathematics and Mechanics, 2016, 37(7): 710-717. doi: 10.21656/1000-0887.360356
Citation: ZHANG Wei-wei, WU Ran-chao. Dual Projective Synchronization of Fractional-Order Chaotic Systems With a Linear Controller[J]. Applied Mathematics and Mechanics, 2016, 37(7): 710-717. doi: 10.21656/1000-0887.360356

基于线性控制的分数阶混沌系统的对偶投影同步

doi: 10.21656/1000-0887.360356
基金项目: 国家自然科学基金(11571016); 教育部博士点专项基金(20093401120001);安徽省自然科学基金(11040606M12;1608085MA14);安徽省高等学校自然科学研究重点项目(KJ2015A152);安徽省高校自然科学研究基金(AQKJ2014B012)
详细信息
    作者简介:

    张玮玮(1982—),男,讲师,硕士(通讯作者. E-mail: wwzhahu@aliyun.com);吴然超(1971—),男,教授,博士,博士生导师.

  • 中图分类号: O415.5;O151

Dual Projective Synchronization of Fractional-Order Chaotic Systems With a Linear Controller

Funds: The National Natural Science Foundation of China(11571016)
  • 摘要: 分数阶混沌系统的对偶同步是一个新的同步方法.有关分数阶混沌系统对偶投影同步的研究较少.基于分数阶系统的稳定性理论,通过设计线性控制器研究了分数阶混沌系统的对偶投影同步.给出了一个实现分数阶混沌系统对偶投影同步的一般方法,推广了现有对偶同步的研究结果,通过分数阶Van der Pol系统和分数阶Willis系统的数值仿真证实了该方法的有效性.
  • [1] Pecora L M, Carroll T L. Synchronization in chaotic system[J].Physical Review Letters,1990,64(2): 821-824.
    [2] YU Xing-huo, SONG Yan-xing. Chaos synchronization via controlling partial state of chaotic systems[J]. International Journal of Bifurcation and Chaos,2001,11(6): 1737-1741.
    [3] Shahverdiev E M, Sivaprakasam S, Shore K A. Lag synchronization in time-delayed systems[J]. Physics Letters A,2012,292(6): 320-324.
    [4] Park E H, Zaks M A, Kurths J. Phase synchronization in the forced Lorenz system[J].Physical Review E,2011,60(6): 6627-6638.
    [5] HU Man-feng, YANG Yong-qing, XU Zhen-yuan, ZHANG Rong, GUO Liu-xiao. Projective cluster synchronization in drive-response dynamical networks[J].Physica A,2007,381: 457-466.
    [6] Yang S S, Duan C K. Generalized synchronization in chaotic systems[J].Chaos, Solitons & Fractals,2011,9(10): 1703-1707.
    [7] 何桂添, 罗懋康. 分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步[J]. 应用数学和力学, 2012,33(5): 539-552.(HE Gui-tian, LUO Mao-kang. Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control[J].Applied Mathematics and Mechanics,2012,33(5): 539-552.(in Chinese))
    [8] Yoshimura K. Multichannel digital communications by the synchronization of globally coupled chaotic systems[J].Physical Review E,1999,60(2): 1648-1657.
    [9] Tsimring L S, Sushchik M M. Multiplexing chaotic signals using synchronization[J].Physics Letters A,1996,213(3): 155-166.
    [10] Liu Y, Davis P. Dual synchronization of chaos[J].Physical Review E,2000,61(3): R2176-R2184.
    [11] NING Di, LU Jun-an, HAN Xiu-ping. Dual synchronization based on two different chaotic systems: Lorenz systems and Rssler systems[J].Journal of Computational and Applied Mathematics,2007,206(2): 1046-1050.
    [12] Salarieh H, Shahrokhi M. Dual synchronization of chaotic systems via time-varying gain proportional feedback[J].Chaos, Solitons & Fractals,2008,38(5): 1342-1348.
    [13] Ghosh D, Chowdhury A R. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems[J].Physics Letters A,2010,374(34): 3425-3436.
    [14] Podlubny I.Fractional Differential Equations [M]. New York: Academic Press, 1999: 105-114.
    [15] SI Gang-quan, SUN Zhi-yong, ZHANG Yan-bin, CHEN Wen-quan. Projective synchronization of different fractional-order chaotic systems with non-identical orders[J].Nonlinear Analysis: Real World Applications,2012,13(4): 1761-1771.
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  206
  • PDF下载量:  659
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-01-24
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回