留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vakhnenko方程的光滑周期波的波长

郭丽娜 陈爱永 黄文韬

郭丽娜, 陈爱永, 黄文韬. Vakhnenko方程的光滑周期波的波长[J]. 应用数学和力学, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020
引用本文: 郭丽娜, 陈爱永, 黄文韬. Vakhnenko方程的光滑周期波的波长[J]. 应用数学和力学, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020
GUO Li-na, CHEN Ai-yong, HUANG Wen-tao. Wave Lengths of Periodic Waves for the Vakhnenko Equation[J]. Applied Mathematics and Mechanics, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020
Citation: GUO Li-na, CHEN Ai-yong, HUANG Wen-tao. Wave Lengths of Periodic Waves for the Vakhnenko Equation[J]. Applied Mathematics and Mechanics, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020

Vakhnenko方程的光滑周期波的波长

doi: 10.21656/1000-0887.370020
基金项目: 国家自然科学基金(11361017);广西自然科学基金(2015GXNSFGA139004)
详细信息
    作者简介:

    郭丽娜(1989—),女,硕士生(E-mail: gdzhaosf@163.com);陈爱永(1977—),男,教授,博士,硕士生导师(通讯作者. E-mail: aiyongchen@163.com).

  • 中图分类号: O357.41

Wave Lengths of Periodic Waves for the Vakhnenko Equation

Funds: The National Natural Science Foundation of China(11361017)
  • 摘要: 主要研究Vakhnenko方程的光滑周期行波解的波长.通过变量变换, Vakhnenko方程可以转化为一个平面多项式微分系统.利用动力系统的临界周期分支方法研究这个多项式微分系统,其主要结果是给出了周期函数T(h)或波长函数λ(a)的单调性质.与KdV方程比较, 波长函数λ(a)单调递减到一个有限的数,而不是单调递增到无穷.结果表明, 对于固定波速c, Vakhnenko方程不存在任意小或任意大波长的光滑周期行波解.
  • [1] Vakhnenko V O. Solitons in a nonlinear model medium[J].Journal of Physics A: Mathematical and General,1992,25(15): 4181-4187.
    [2] Vakhnenko V O, Parkes E J. The two loop soliton solution of the Vakhnenko equation[J].Nonlinearity,1998,11(6): 1457-1464.
    [3] Morrison A J, Parkes E J, Vakhnenko V O. TheN loop soliton solution of the Vakhnenko equation[J].Nonlinearity,1999,12(5): 1427-1437.
    [4] Chow S N, Sanders J A. On the number of critical points of the period[J].Journal of Differential Equations,1986,64(1): 51-66.
    [5] Chicone C, Jacobs M. Bifurcation of critical periods for plane vector fields[J].Transactions of the American Mathematical Society,1989,312(2): 433-486.
    [6] Sabatini M. On the period function of Liénard systems[J].Journal of Differential Equations,1999,152(2): 467-487.
    [7] ZHAO Yu-lin. The monotonicity of the period function for codimension four quadratic systemQ4[J].Journal of Differential Equations,2002,185(1): 370-387.
    [8] LI Cheng-zhi, LU Ke-ning. The period function of hyperelliptic Hamiltonians of degree 5 with real critical points[J].Nonlinearity,2008,21(3): 465-483.
    [9] Gasull A, LIU Chang-jian, YANG Jia-zhong. On the number of critical periods for planar polynomial systems of arbitrary degree[J].Journal of Differential Equations,2010,249(3): 684-692.
    [10] CHEN Xing-wu, Romanovski V G, ZHANG Wei-nian. Critical periods of perturbations of reversible rigidly isochronous centers[J].Journal of Differential Equations,2011,251(6): 1505-1525.
    [11] Garijo A, Villadelpra J. Algebraic and analytical tools for the study of the period function[J].Journal of Differential Equations,2014,257(7): 2464-2484.
    [12] Constantin A. The trajectories of particles in Stokes waves[J].Inventiones Mathematicae,2006,166(3): 523-535.
    [13] CHEN Ai-yong, LI Ji-bin, HUANG Wen-tao. The monotonicity and critical periods of periodic waves of the φ6 field model[J].Nonlinear Dynamics,2011,63(1/2): 205-215.
    [14] Geyer A, Villadelprat J. On the wave length of smooth periodic traveling waves of the Camassa-Holm equation[J].Journal of Differential Equations,2015,259: 2317-2332.
    [15] LI Ji-bin.Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions[M]. Beijing: Science Press, 2013.
    [16] LI Ji-bin, CHEN Guan-rong. On a class of singular nonlinear traveling wave equations[J].International Journal of Bifurcation and Chaos,2007,17(11): 4049-4065.
    [17] LI Ji-bin, DAI Hui-hui.On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach[M]. Beijing: Science Press, 2007.
    [18] CHEN Ai-yong, WEN Shuang-quan, TANG Sheng-qiang, HUANG Wen-tao, QIAO Zhi-qun. Effects of quadratic singular curves in integrable equations[J].Studies in Applied Mathematics,2015,134(1): 24-61.
    [19] 李春海, 朱文静, 陈爱永, 王红浩. 浅水中度振幅孤立波解的分支[J]. 应用数学和力学, 2014,35(9): 1002-1010.(LI Chun-hai, ZHU Wen-jing, CHEN Ai-yong, WANG Hong-hao. Bifurcations of solitary wave solutions of moderate amplitude in shallow water[J].Applied Mathematics and Mechanics,2014,35(9): 1002-1010.(in Chinese))
    [20] Christov O, Hakkaev S, Iliev I D. Non-uniform continuity of periodic Holm-Staleyb -family of equations[J].Nonlinear Analysis,2010,75(13): 4821-4838.
  • 加载中
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  146
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回