留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析

祖力 黄冬冬 柳扬

祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051
引用本文: 祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051
ZU Li, HUANG Dong-dong, LIU Yang. Dynamics of Dual-Dispersal Predator-Prey Systems Under Stochastic Perturbations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051
Citation: ZU Li, HUANG Dong-dong, LIU Yang. Dynamics of Dual-Dispersal Predator-Prey Systems Under Stochastic Perturbations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051

捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析

doi: 10.21656/1000-0887.370051
基金项目: 海南省教育厅高等学校科学研究项目(Hjkj2013-16);海南省自然科学基金(20161006)
详细信息
    作者简介:

    祖力(1979—),女,副教授,博士(E-mail: 147362868@qq.com);黄冬冬(1990—),男,硕士生(通讯作者. E-mail: 649078137@qq.com);柳扬(1979—),女,讲师,博士生.

  • 中图分类号: O175.1

Dynamics of Dual-Dispersal Predator-Prey Systems Under Stochastic Perturbations

  • 摘要: 考虑了斑块环境下捕食者种群和食饵种群分别在n个斑块扩散的随机捕食食饵模型.利用Lyapunov函数法证明了对任意给定的初始值,随机系统全局正解的存在唯一性,并对其进行了有界性分析.此外给出了食饵种群及整个系统灭绝的充分条件.最后通过数值模拟验证了所得理论的正确性.
  • [1] 王刚, 唐三一. 非线性脉冲状态依赖捕食-被捕食模型的定性分析[J]. 应用数学和力学, 2013,34(5): 496-505.(WANG Gang, TANG San-yi. Qualitative analysis of prey-predator model with nonlinear impulsive effects[J]. Applied Mathematics and Mechanics,2013,34(5): 496-505.(in Chinese))
    [2] Bao J, Mao X, Yin G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis: Theory, Methods & Applications,2011,74(17): 6601-6616.
    [3] Zu L, Jiang D, O’Regan D. Asymptotic properties and simulations of a stochastic single-species dispersal model under regime switching[J]. Journal of Applied Mathematics and Computing,2013,43(1/2): 387-407.
    [4] ZU Li, JIANG Da-qing, JIANG Fu-quan. Existence, stationary distribution, and extinction of predator-prey system of prey dispersal with stochastic perturbation[J]. Abstract and Applied Analysis,2012(2012): 547152.
    [5] Cui J, Takeuchi Y, Lin Z. Permanence and extinction for dispersal population systems[J]. Journal of Mathematical Analysis and Applications,2004,298(1): 73-93.
    [6] Zhang L, Teng Z. Boundedness and permanence in a class of periodic time-dependent predator-prey system with prey dispersal and predator density-independence[J]. Chaos, Solitons & Fractals,2008,36(3): 729-739.
    [7] Kuang Y, Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patch environments[J]. Mathematical Biosciences,1994,120(1): 77-98.
    [8] Ji C, Jiang D, Shi N. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation[J]. Journal of Mathematical Analysis and Applications,2009,359(2): 482-498.
    [9] Cai G Q, Lin Y K. Stochastic analysis of predator-prey type ecosystems[J]. Ecological Complexity,2007,4(4): 242-249.
    [10] Li M Y, Shuai Z. Global-stability problem for coupled systems of differential equations on networks[J]. Journal of Differential Equations,2010,248(1): 1-20.
    [11] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review,2001,43(3): 525-546.
    [12] Mao X. Stochastic Differential Equations and Applications [M]. Elsevier, 2007.
    [13] 高扬, 赵微, 白旭亚. 斑块环境下一类捕食者和食饵均带有扩散的捕食食饵模型稳定性分析[J]. 高师理科学刊, 2015,35(4): 14-17.(GAO Yang, ZHAO Wei, BAI Xu-ya. Stability analysis for one class of predator-prey model with the dispersal in predators and preys among patches[J]. Journal of Science of Teachers’ College and University,2015,35(4): 14-17.(in Chinese))
    [14] 张树文. 具有时滞和扩散的随机捕食-食饵系统[J]. 数学物理学报, 2015,35(3): 592-603.(ZHANG Shu-wen. A stochastic predator-prey with time delays and prey dispersal [J]. Acta Mathematica Scientia,2015,35(3): 592-603.(in Chinese))
    [15] 徐伟, 戚鲁媛, 高维廷. 噪声和生存环境对捕食生态系统的影响[J]. 应用数学和力学, 2013,34(2): 162-171.(XU Wei, QI Lu-yuan, GAO Wei-ting. Effects of noises and habitat complexity in the prey-predator ecosystem[J]. Applied Mathematics and Mechanics,2013,34(2): 162-171.(in Chinese))
    [16] Peng S, Zhu X. Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations[J]. Stochastic Processes and Their Applications,2006,116(3): 370-380.
  • 加载中
计量
  • 文章访问数:  1026
  • HTML全文浏览量:  98
  • PDF下载量:  769
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-23
  • 修回日期:  2016-10-16
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回