留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状陶瓷的材料力和裂纹力评估方法

陈昌荣

陈昌荣. 层状陶瓷的材料力和裂纹力评估方法[J]. 应用数学和力学, 2016, 37(7): 748-755. doi: 10.21656/1000-0887.370088
引用本文: 陈昌荣. 层状陶瓷的材料力和裂纹力评估方法[J]. 应用数学和力学, 2016, 37(7): 748-755. doi: 10.21656/1000-0887.370088
CHEN Chang-rong. A Method for Evaluating Material Forces and Crack Forces in Ceramic Laminates[J]. Applied Mathematics and Mechanics, 2016, 37(7): 748-755. doi: 10.21656/1000-0887.370088
Citation: CHEN Chang-rong. A Method for Evaluating Material Forces and Crack Forces in Ceramic Laminates[J]. Applied Mathematics and Mechanics, 2016, 37(7): 748-755. doi: 10.21656/1000-0887.370088

层状陶瓷的材料力和裂纹力评估方法

doi: 10.21656/1000-0887.370088
基金项目: 国家自然科学基金(51175321)
详细信息
    作者简介:

    陈昌荣(1964—),男,教授, 博士(E-mail: 13761742152@163.com).

  • 中图分类号: O343

A Method for Evaluating Material Forces and Crack Forces in Ceramic Laminates

Funds: The National Natural Science Foundation of China(51175321)
  • 摘要: 用J积分理论分析了层状陶瓷受弯曲载荷作用时Jfar(0)Jfar(a)Jfar(a)-Jfar(0)Jtip的特点,这里Jfar(0)Jfar(a)分别表示无裂纹时和裂纹长度为a时的远场J积分,Jtip表示裂尖J积分.裂纹是垂直于界面的表面裂纹,基本假设是裂纹只影响局部应力应变场.由于积分路径所包围的材料界面长度随积分路径变化,导致Jfar(0)Jfar(a)都随积分路径变化,但当积分路径远离裂纹影响区域时Jfar(a)-Jfar(0)不再随路径变化.Jfar(a)-Jfar(0)可作为非均匀材料断裂的远场驱动力参量,Jtip-(Jfar(a)-Jfar(0))可用来评价材料非均匀性对裂纹扩展驱动力的促进或抑制作用.
  • [1] Kolednik O, Predan J, Gubeljak N, Fischer D F. Modeling fatigue crack growth in biomaterial specimen with the configurational force concept[J].Materials Science and Engineering: A,2009,519(1/2): 172-183.
    [2] Fischer F D, Predan J, Müller R, Kolednik O. On problems with the determination of the fracture resistance for materials with spatial variations of the Young’s modulus[J].International Journal of Fracture,2014,190(1): 23-38.
    [3] Eshelby J D. The elastic energy-momentum tensor[J].Journal of Elasticity,1975,5(3): 321-335.
    [4] CHEN Wen-hua, WU Chei-wei. On theJ -integral for a pressurized crack in bonded materials[J].International Journal of Fracture,1980,16(2): R47-R51.
    [5] Riemelmoser O, Pippan R. TheJ -integral at Dugdale cracks perpendicular to interfaces of materials with dissimilar yield stresses[J].International Journal of Fracture,2000,103(4): 397-418.
    [6] Chen C R, Pascual J, Fischer F D, Kolednik O, Danzer R. Prediction of the fracture toughness of a ceramic multilayer composite: modeling and experiments[J].Acta Materialia,2007,55(2): 409-421.
    [7] Chen C R, Bermejo R, Kolednik O. Numerical analysis on special cracking phenomena of residual compressive inter-layer in ceramic laminates[J].Engineering Fracture Mechanics,2010,77(13): 2567-2576.
    [8] Bermejo R, Torres Y, Sánchez-Herencia A J, Baudín C, Anglada M, Llanes L. Residual stresses, strength and toughness of laminates with different layer thickness ratios[J].Acta Materialia,2006,54(18): 4745-4757.
    [9] Sun C T, Wu X X. On the J-integral in periodically layered composites[J].International Journal of Fracture,1996,78(1): 89-100.
    [10] Rask M, Sorensen B F. Determination of theJintegral for laminated double cantilever beam specimens: the curvature approach[J].Engineering Fracture Mechanics,2012,96: 37-48.
    [11] Eshelby J D. The force on an elastic singularity[J].Phil Trans R So Lond A,1951,244(871): 87-112.
    [12] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J].Journal of Applied Mechanics,1968,35(2): 379-386.
    [13] Nguyen T D, Govindjee S, Klein P A, Gao H. A material force method for inelastic fracture mechanics[J].Journal of Mechanics and Physics of Solids,2005,53(1): 91-121.
    [14] Markenscoff X. Driving forces on phase boundaries: the Eshelby principle for an interface[J].International Journal of Fracture,2010,165(2): 223-227.
    [15] Simha N K, Fischer F D, Shan G X, Chen C R, Kolednik O.J -integral and crack driving force in elastic-plastic materials[J].Journal of the Mechanics and Physics of Solids,2008,56(9): 2876-2895.
    [16] Simha N K, Fischer F D, Kolednik O, Chen C R. Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materials[J].Journal of the Mechanics and Physics of Solids,2003,51(1): 219-240.
    [17] Fischer F D, Predan J, Kolednik O, Simha N K. Application of material forces to fracture of inhomogeneous materials: illustrative examples[J].Archive of Applied Mechanics,2007,77(2): 95-112.
    [18] 钟万勰. 力学与对称-离散: 祖冲之方法论[J]. 应用数学和力学, 2016,37(1): i-ii. (ZHONG Wan-xie. Mechanics and symmetry-discretization: Zu-type methodology[J].Applied Mathematics and Mechanics,2016,37(1): i-ii. (in Chinese))
    [19] Tang S, Guo T F, Cheng L. Mode mixity and nonlinear viscous effects on toughness of interfaces[J].International Journal of Solids and Structures,2008,45(9): 2493-2511.
    [20] 陈昌荣. 适合裂尖穿越界面行为分析的断裂模拟方法研究[J]. 应用数学和力学, 2014,35(9): 979-985.(CHEN Chang-rong. On the fracture modeling method for crack tips penetrating elastic interfaces[J].Applied Mathematics and Mechanics,2014,35(9): 979-985.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  114
  • PDF下载量:  989
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回