留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类两参数非线性反应扩散方程奇摄动问题的广义解

冯依虎 刘树德 莫嘉琪

冯依虎, 刘树德, 莫嘉琪. 一类两参数非线性反应扩散方程奇摄动问题的广义解[J]. 应用数学和力学, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177
引用本文: 冯依虎, 刘树德, 莫嘉琪. 一类两参数非线性反应扩散方程奇摄动问题的广义解[J]. 应用数学和力学, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177
FENG Yi-hu, LIU Shu-de, MO Jia-qi. Generalized Solution to a Class of Singularly Perturbed Problem of Nonlinear Reaction Diffusion Equation With Two Parameters[J]. Applied Mathematics and Mechanics, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177
Citation: FENG Yi-hu, LIU Shu-de, MO Jia-qi. Generalized Solution to a Class of Singularly Perturbed Problem of Nonlinear Reaction Diffusion Equation With Two Parameters[J]. Applied Mathematics and Mechanics, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177

一类两参数非线性反应扩散方程奇摄动问题的广义解

doi: 10.21656/1000-0887.370177
基金项目: 国家自然科学基金(11202106);安徽省教育厅自然科学重点基金(KJ2015A347;KJ2017A702);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520)
详细信息
    作者简介:

    冯依虎(1982—),男,副教授,硕士(E-mail: fengyihubzsz@163.com);莫嘉琪(1937—),男,教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Generalized Solution to a Class of Singularly Perturbed Problem of Nonlinear Reaction Diffusion Equation With Two Parameters

Funds: The National Natural Science Foundation of China(11202106)
  • 摘要: 利用奇异摄动方法讨论了一类两参数广义奇摄动反应扩散方程问题.首先,在适当的条件下,对两个小参数进行幂级数展开,构造了问题的形式外部解.其次,在区域边界邻近,建立局部坐标系,利用多重尺度变量方法分别构造了问题解的第一、第二边界层校正项.最后,利用合成展开理论,得到了问题广义解的渐近表示式,并用泛函分析不动点原理,估计了渐近展开式的精度.该文得到问题的广义解在重叠区域内具有两个不同厚度的校正函数.它们分别对边界条件起着校正的作用,扩展了问题研究范围,同时还提供了构造这类在重叠区域上不同厚度的校正项的方法,因此具有广泛的研究前景.
  • [1] de Jager E M, Furu J. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
    [2] Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG, 2007.
    [3] Martínez S, Wolanski N. A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman[J]. SIAM Journal on Mathematical Analysis,2009,41(1): 318-359.
    [4] Kellogg R B, Kopteva N A. Singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations, 2010,248(1): 184-208.
    [5] Tian C, Zhu P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems[J]. Acta Applicandae Mathematicae, 2012,121(1): 157-173.
    [6] Skrynnikov Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM Journal on Applied Mathematics, 2012,72(1): 405-416.
    [7] Samusenko P. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. Journal of Mathematical Sciences, 2013,189(5): 834-847.
    [8] MO Jia-qi, HAN Xiang-lin, CHEN Song-lin. The singularly perturbed nonlocal reaction diffusion system[J]. Acta Mathematica Scientia, 2002,22B(4): 549-556.
    [9] MO Jia-qi, HAN Xiang-lin. A class of singularly perturbed generalized solution for the reaction diffusion problems[J]. Journal of Systems Science and Mathematical Sciences, 2002,22(4): 447-451.
    [10] MO Jia-qi, LIN Wan-tao. A class of nonlinear singularly perturbed problems for reaction diffusion equations with boundary perturbation[J]. Acta Mathematicae Applicatae Sinica, 2006,22(1): 27-32.
    [11] MO Jia-qi. A class of singularly perturbed differential-difference reaction diffusion equation[J]. Advances in Mathematics, 2009,38(2): 227-231.
    [12] MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China(Ser G): Physics, Mechanics & Astronomy, 2009, 52(7): 1007-1070.
    [13] MO Jia-qi, LIN Wan-tao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science and Complexity,2008,20(1): 119-128.
    [14] MO Jia-qi. A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters[J]. Chinese Physics B,2010,19(1): 010203.
    [15] FENG Yi-hu, MO Jia-qi. The shock asymptotic solution for nonlinear elliptic equation with two parameters[J]. Mathematica Applicata, 2015,27(3): 579-585.
    [16] FENG Yi-hu, MO Jia-qi. Asymptotic solution for singularly perturbed fractional order differential equation[J]. Journal of Mathematics,2016,36(2): 239-245.
    [17] FENG Yi-hu, CHEN Xian-feng, MO Jia-qi. The generalized interior shock layer solution of a class of nonlinear singularly perturbed reaction diffusion problem[J]. Mathematica Applicata,2016,29(1): 161-165.
    [18] 冯依虎, 石兰芳, 汪维刚, 等. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.(FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, et al. Traveling wave solution to a class of generalized nonlinear strong-damping disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
    [19] 冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤子行波解[J]. 应用数学和力学, 2016,37(4): 426-433.(FENG Yi-hu, MO Jia-qi. Soliton travelling wave solutions to a class of nonlinear nonlocal disturbed LGH equations[J]. Applied Mathematics and Mechanics, 2016,37(4): 426-433.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  223
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-10-01
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回