[1] |
Ali A, Asghar S, Alisulami H H. Oscillatory flow of second grade fluid in cylindrical tube[J]. Applied Mathematics and Mechanics (English Edition),2013,34(9): 1097-1106.
|
[2] |
Buske D, Bodmann B, Vilhena M T M B, et al. On the solution of the coupled advection-diffusion and Navier-Stokes equations[J]. American Journal of Environmental Engineering,2015,5(1A):1-8.
|
[3] |
刘莹, 章德发, 毕勇强, 等. 主动脉弓及分支血管内非稳态血流分析[J]. 应用数学和力学, 2015,36(4): 432-439.(LIU Ying, ZHANG De-fa, BI Yong-qiang, et al. Analysis of unsteady blood flow in the human aortic bifurcation[J]. Applied Mathematics and Mechanics,2015,36(4): 432-439.(in Chinese))
|
[4] |
Constantin P, Foias C. Navier-Stokes Equations (Chicago Lectures in Mathematics) [M]. Chicago: University of Chicago Press, 1988.
|
[5] |
Fefferman C L. Existence and smoothness of the Navier-Stokes equation[M]// The Millennium Prize Problems . Cambridge: Clay Mathematics Institute, 2006: 57-67.
|
[6] |
Majda A J, Bertozzi A L. Vorticity and Incompressible Flow (Cambridge Texts in Applied Mathematics) [M]. Cambridge: Cambridge University Press, 2002.
|
[7] |
Leonardi S, Málek J, Necas J, et al. On axially symmetric flows in R3[J].Z Anal Anwendungen,1999,18(3): 639-649.
|
[8] |
Ukhovskii M R, Yudovich V I. Axially symmetric flows of ideal and viscous fluids filling the whole space[J]. Prikl Mat Meh,1968,32(1): 59-69.
|
[9] |
Chae D, Lee J. On the regularity of the axisymmetric solutions of the Navier-Stokes equations[J]. Mathematische Zeitschrift,2002,239(4): 645-671.
|
[10] |
Kubica A, Pokorn M, Zajaczkowski W. Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations[J]. Mathematical Methods in the Applied Sciences,2012,35(3): 360-371.
|
[11] |
Neustupa J, Pokorn M. Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[J]. Mathematica Bohemica,2001,126(2): 469-481.
|
[12] |
ZHOU Yong. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3[J]. Proc Amer Math Soc,2006,134: 149-156.
|
[13] |
JIA Xuan-ji, ZHOU Yong. Remarks on regularity criteria for the Navier-Stokes equations via one velocity component[J]. Nonlinear Analysis: Real World Applications,2014,15: 239-245.
|
[14] |
ZHOU Yong. A new regularity criterion for weak solutions to the Navier-Stokes equations[J]. Journal de Mathématiques Pures et Appliquées,2005,84(11): 1496-1514.
|
[15] |
ZHOU Yong, Pokorn M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component[J]. Nonlinearity,2010,23(5): 1097-1107.
|
[16] |
ZHOU Yong. A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity[J]. Monatshefte für Mathematik,2005,144(3): 251-257.
|