留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋隧洞围岩应力的精确解与近似解的对比分析

周凤玺 曹小林

周凤玺, 曹小林. 深埋隧洞围岩应力的精确解与近似解的对比分析[J]. 应用数学和力学, 2017, 38(10): 1166-1179. doi: 10.21656/1000-0887.370196
引用本文: 周凤玺, 曹小林. 深埋隧洞围岩应力的精确解与近似解的对比分析[J]. 应用数学和力学, 2017, 38(10): 1166-1179. doi: 10.21656/1000-0887.370196
ZHOU Feng-xi, CAO Xiao-lin. Comparison Between Exact Solutions and Approximate Solutions of Deep Tunnels[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1166-1179. doi: 10.21656/1000-0887.370196
Citation: ZHOU Feng-xi, CAO Xiao-lin. Comparison Between Exact Solutions and Approximate Solutions of Deep Tunnels[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1166-1179. doi: 10.21656/1000-0887.370196

深埋隧洞围岩应力的精确解与近似解的对比分析

doi: 10.21656/1000-0887.370196
基金项目: 国家自然科学基金(51368038);甘肃省教育厅研究生导师基金(1103-07)
详细信息
    作者简介:

    周凤玺(1979—),男,教授,博士,博士生导师(通讯作者. E-mail: geolut@163.com).

  • 中图分类号: TU91

Comparison Between Exact Solutions and Approximate Solutions of Deep Tunnels

Funds: The National Natural Science Foundation of China(51368038)
  • 摘要: 对不同断面形状的深埋隧洞进行了分析,比较了隧洞围岩应力解析解与通过当量半径方法得到的近似解之间的差别.首先,应用复变函数的基本理论,给出圆形、椭圆、矩形、直墙拱形等几种常见深埋隧洞围岩应力的解析表达式.其次,应用当量半径的折算形式,将其任意形状的边界转化为标准圆形断面,利用Lamé解答得到了各围岩应力分量.最后,考虑隧洞断面形状参数的变化,通过数值算例对精确解和近似解进行了比较,分析了当量半径折算形式的精确度.在此基础上,应用有限元方法验证了复变函数解析解的精确性,以椭圆、矩形和直墙拱形的复变函数解验证当量半径精确度.结果表明,当量半径的折算形式解答与精确解答之间相似程度与隧洞的断面形状和几何参数之间有着密切的关系.
  • [1] 穆斯海里什维里. 数学弹性力学的几个基本问题[M]. 赵惠元, 译. 北京: 科学出版社, 1958.(Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. ZHAO Hui-yuan, transl. Beijing: Science Press, 1958.(Chinese version))
    [2] Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(2): 77-89.
    [3] Verruijt A, Booker J R. Complex variable analysis of Mindlin’s tunnel problem[C]//Smith D W, Carter J P, ed. Developments in Theoretical Geomechanics . Rotterdam, 2000.
    [4] 陈谱. 基于复变函数解法和突变理论的隧洞围岩稳定性研究[D]. 硕士学位论文. 北京: 北京交通大学, 2014.(CHEN Pu. Study on stability of tunnel surrounding rock based on complex function method and catastrophe theory[D]. Master Thesis. Beijing: Beijing Jiaotong University, 2014.(in Chinese))
    [5] 施有志. 双孔平行地铁隧道开挖的复变函数解析解与数值分析[D]. 博士学位论文. 厦门: 华侨大学, 2013.(SHI You-zhi. Double-hole parallel tunnel excavation of complex analytical solution and numerical analysis[D]. PhD Thesis. Xiamen: Huaqiao University, 2013.(in Chinese))
    [6] 祝江鸿, 杨建辉, 施高萍, 等. 单位圆外域到任意开挖断面隧洞外域共形映射的计算方法[J]. 岩土力学, 2014,35(1): 175-183.(ZHU Jiang-hong, YANG Jian-hui, SHI Gao-ping, et al. Calculating method for conformal mapping from exterior of unit circle to exterior of cavern with arbitrary excavation cross-section[J]. Rock and Soil Mechanics,2014,35(1): 175-183.(in Chinese))
    [7] Exadaktylos G E, Stavropoulou M C. A closed-form elastic solution for stresses and displacements around tunnels[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(7): 905-916.
    [8] Strack O E, Verruijt A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(12): 1235-1252.
    [9] 李培楠, 刘俊, 苏锋, 等. 任意形状隧道围岩应力与位移的解析延拓求解[J]. 同济大学学报(自然科学版), 2013,10(41): 1483-1489.(LI Pei-nan, LIU Jun, SU Feng, et al. Analytical continuation method for solving stress and displacement of surrounding rock buried tunnel excavation with arbitrary shape[J]. Journal of Tongji University(Natural Science),2013,10(41): 1483-1489.(in Chinese))
    [10] 王志良, 申林方, 姚激, 等. 浅埋隧道围岩应力场的计算复变函数求解法[J]. 岩土力学, 2010,31(1): 86-90.(WANG Zhi-liang, SHEN Lin-fang, YAO Ji, et al. Calculation of stress field in surrounding rocks of shallow tunnel using computational function of complex variable method[J]. Rock and Soil Mechanics,2010,31(1): 86-90.(in Chinese))
    [11] 李世辉. 隧道支护设计新论: 典型类比分析法应用与理论[M]. 北京: 科学出版社, 1999.(LI Shi-hui. The Supporting Design of Tunnel: Application and Theory of Typical Analog Analysis Method [M]. Beijing: Science Press, 1999.(in Chinese))
    [12] 刘长武, 曹磊, 刘树新. 深埋非圆形地下洞室围岩应力解析分析的“当量半径”法[J]. 铜业工程,2010(1): 1-5.(LIU Chang-wu, CAO Lei, LIU Shu-xing. Method of “equivalent radius” for the analyzing rock stress of high-buried non-circular underground chambers[J]. Copper Engineering,2010(1): 1-5.(in Chinese))
    [13] 华安增. 矿山岩石力学基础[M]. 北京: 煤炭工业出版社, 2002.(HUA An-zeng. Foundation of Rock Mechanics in Mine [M]. Beijing: China Coal Industry Publishing House, 2002.(in Chinese))
    [14] 刘长武, 翟才旺. 地层空间应力场的开采扰动与模拟[M]. 郑州: 黄河水利出版社, 2005.(LIU Chang-wu, ZHAI Cai-wang. Mining Disturbance and Simulation of Stress Field in Formation Space [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2005. (in Chinese))
    [15] 吕爱钟, 张路青. 地下隧道力学分析中的复变函数方法[M]. 北京: 科学出版社, 2007.(L Ai-zhong, ZHANG Lu-qing. The Complex Variable Function Method in the Mechanics Analysis of Underground Tunnel [M]. Beijing: Science Press, 2007.(in Chinese))
    [16] 米海珍. 弹性力学[M]. 北京: 清华大学出版社, 2013.(MI Hai-zhen. Elastic Mechanics [M]. Beijing: Tsinghua University Press, 2013.(in Chinese))
    [17] 姜学焱. 煤矿巷道围岩应力场的复变函数解[D]. 硕士学位论文. 阜新: 辽宁工程技术大学, 2013.(JIANG Xue-yan. Complex variable function solution of stress field of surrounding rock in coal mine[D]. Master Thesis. Fuxin: Liaoning Technical University, 2013.(in Chinese))
  • 加载中
计量
  • 文章访问数:  855
  • HTML全文浏览量:  140
  • PDF下载量:  785
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2017-03-30
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回