[1] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
|
[2] |
Harten A, Lax P D, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review,1983,25(1): 35-61.
|
[3] |
Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
|
[4] |
Quirk J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
|
[5] |
LIOU Meng-sing. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics,2000,160(2): 623-648.
|
[6] |
Pandolfi M, d’Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “Carbuncle” phenomenon[J]. Journal of Computational Physics,2001,166(2): 271-301.
|
[7] |
Kim S S, Kim C, Rho O H, et al. Cures for the shock instability: development of a shock-stable Roe scheme[J]. Journal of Computational Physics,2003,185(2): 342-374.
|
[8] |
Chauvat Y, Moschetta J M, Gressier J. Shock wave numerical structure and the carbuncle phenomenon[J]. International Journal for Numerical Methods in Fluids,2005,47(8/9): 903-909.
|
[9] |
Kim S D, Lee B J, Lee H J, et al. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics,2009,228(20): 7634-7642.
|
[10] |
Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics,1981,40(2): 263-293.
|
[11] |
van Leer B. Flux vector splitting for the Euler equations[C]//8th International Conference on Numerical Methods in Fluid Dynamics.Berlin, Heidelberg: Springer-Verlag, 1982: 507-512.
|
[12] |
Anderson W K, Thomas J L, van Leer B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal,1986,24(9): 1453-1460.
|
[13] |
Anderson W K, Thomas J L, Rumsey C L. Extension and application of flux-vector splitting to calculations on dynamic meshes[J]. AIAA Journal,1989,27(6): 673-674.
|
[14] |
LIOU Meng-sing, Steffen Jr C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
|
[15] |
LIOU Meng-sing. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
|
[16] |
LIOU Meng-sing. Recent progress and applications of AUSM+[C]// Bruneau C H, ed. Sixteenth International Conference on Numerical Methods in Fluid Dynamics.Berlin: Springer-Verlag, 1998: 302-307.
|
[17] |
LIOU Meng-sing. A sequel to AUSM, part II: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
|
[18] |
Zha G C, Bilgen E. Numerical solutions of Euler equations by using a new flux vector splitting scheme[J]. International Journal for Numerical Methods in Fluids,1993,17(2): 115-144.
|
[19] |
Toro E F, Vázquez-Cendón M E. Flux splitting schemes for the Euler equations[J]. Computers & Fluids,2012,70: 1-12.
|
[20] |
Collela P. Multidimensional upwind methods for hyperbolic conservation laws[J]. Journal of Computational Physics,1990,87(1): 171-200.
|
[21] |
Brio M, Zakharian A R, Webb G M. Two-dimensional Riemann solver for Euler equations of gas dynamics[J]. Journal of Computational Physics,2001,167(1): 177-195.
|
[22] |
LeVeque R J. Wave propagation algorithms for multidimensional hyperbolic systems[J].Journal of Computational Physics,1997,131(2): 327-353.
|
[23] |
Fey M. Multidimensional upwinding—part I: the method of transport for solving the Euler equations[J]. Journal of Computational Physics,1998,143(1): 159-180.
|
[24] |
Fey M. Multidimensional upwinding—part II: decomposition of the Euler equations into advection equations[J]. Journal of Computational Physics,1998,143(1): 181-203.
|
[25] |
Wendroff B. A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics[J]. Computers & Mathematics With Applications,1999,38(11/12): 175-185.
|
[26] |
Balsara D S. Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics,2010,229(6): 1970-1993.
|
[27] |
Balsara D S. A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics,2012,231(22): 7476-7503.
|
[28] |
Balsara D S. Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics,2015,295: 1-23.
|
[29] |
Capdeville G. A high-order multi-dimensional HLL Riemann solver for non-linear Euler equations[J]. Journal of Computational Physics,2011,230(8): 2915-2951.
|
[30] |
Vides J, Nkonga B, Audit E. A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws[J]. Journal of Computational Physics,2015,280: 643-675.
|
[31] |
Mandal J C, Sharma V. A genuinely multidimensional convective pressure flux split Riemann solver for Euler equations[J]. Journal of Computational Physics,2015,297: 669-688.
|
[32] |
Mandal J C, Panwar V. Robust HLL-type Riemann solver capable of resolving contact discontinuity[J]. Computers & Fluids,2012,63: 148-164.
|
[33] |
Gottlieb S. On high order strong stability preserving Runge-Kutta and multi step time discretizations[J]. Journal of Scientific Computing,2005,25(1): 105-128.
|
[34] |
Mandal J C, Arvind N. High resolution schemes for genuinely two-dimensional HLLE Riemann solver[J]. Progress in Computational Fluid Dynamics,2014,14(4): 205-220.
|
[35] |
JIANG Guang-shan, SHU Chi-wang. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1): 202-228.
|
[36] |
Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction [M]. 3rd ed. Berlin: Springer, 2009.
|
[37] |
Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
|
[38] |
San O, Kara K. Numerical assessments of high-order accurate shock capturing schemes: Kelvin-Helmholtz type vortical structures in high-resolutions[J]. Computer & Fluid,2014,89: 254-276.
|
[39] |
Schulz-Rinne C W, Collins J P, Glaz H M. Numerical solution of the Riemann problem for two-dimensional gas dynamics[J]. SIAM Journal of Scientific Computing,1993,14(6): 1394-1414.
|
[40] |
XU Kun. Gas-kinetic schemes for unsteady compressible flow simulations[R]. Von Karman Institute for Fluid Dynamics Lecture Series, 1998: 1-10.
|
[41] |
Dumbser M, Moschetta J M, Gressier J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics,2004,197(2): 647-670.
|
[42] |
Moschetta J M, Gressier J, Robinet J C, et al. The carbuncle phenomenon: a genuine Euler instability?[M]//Toro E F, ed. Godunov Methods: Theory and Applications.New York: Kluwer Academic/Plenum Publisher, 1995: 639-645.
|
[43] |
WU Hao, SHEN Long-jun, SHEN Zhi-jun. A hybrid numerical method to cure numerical shock instability[J]. Communications in Computational Physics,2010,8(5): 1264-1271.
|