留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具任意次非线性项的Camassa-Holm方程的双孤子新解

套格图桑

套格图桑. 具任意次非线性项的Camassa-Holm方程的双孤子新解[J]. 应用数学和力学, 2017, 38(5): 553-560. doi: 10.21656/1000-0887.370211
引用本文: 套格图桑. 具任意次非线性项的Camassa-Holm方程的双孤子新解[J]. 应用数学和力学, 2017, 38(5): 553-560. doi: 10.21656/1000-0887.370211
Taogetusang. New 2-Soliton Solutions to the Arbitrary Order Nonlinear Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2017, 38(5): 553-560. doi: 10.21656/1000-0887.370211
Citation: Taogetusang. New 2-Soliton Solutions to the Arbitrary Order Nonlinear Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2017, 38(5): 553-560. doi: 10.21656/1000-0887.370211

具任意次非线性项的Camassa-Holm方程的双孤子新解

doi: 10.21656/1000-0887.370211
基金项目: 国家自然科学基金(11361040);内蒙古自治区自然科学基金(2015MS0128);内蒙古自治区高等学校科学研究基金(NJZY16180)
详细信息
    作者简介:

    套格图桑(1963—),男,教授,博士(E-mail: tgts@imnu.edu.cn).

  • 中图分类号: O175

New 2-Soliton Solutions to the Arbitrary Order Nonlinear Camassa-Holm Equation

Funds: The National Natural Science Foundation of China(11361040)
  • 摘要: 给出辅助方程、函数变换与变量分离解相结合的方法,构造了具任意次非线性项的Camassa-Holm方程的双孤子和双周期新解.首先,通过两个辅助方程、函数变换与变量分离解,将具任意次非线性项的Camassa-Holm方程的求解问题转化为非线性代数方程的求解问题.然后,借助符号计算系统Mathematica求出该方程组的解,并用辅助方程的相关结论,构造了双周期解和双孤子新解.
  • [1] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett,1993,71(13): 1661-1664.
    [2] 殷久利, 田立新. 一类非线性方程的compacton解及其移动compacton 解[J]. 物理学报, 2004,53(9): 2821-2827.(YIN Jiu-li, TIAN Li-xin. Compacton solutions and floating compacton solutions of one type of nonlinear equations[J]. Acta Physica Sinica,2004,53(9): 2821-2827.(in Chinese))
    [3] CHEN Yong, LI Biao. New exact travelling wave solutions for generalized Zakharov-Kuznetsov equations using general projective Riccati equation method[J]. Commun Theor Phys,2004,41(1): 1-6.
    [4] Sirendaoerji, SUN Jong. Adirect method for solving sine-Gordon type equations[J]. Phys Lett A ,2002,298(3):133-139.
    [5] Gepreel K A, Omran S. Exact solutions for nonlinear partial fractional differential equations[J]. Chinese Physics B,2012,21(11): 110204.
    [6] Alam M N, Akbar M A, Mohyud-Din S T. A novel (G′/G) -expansion method and its application to the Boussinesq equation[J]. Chinese Physics B,2014,23(2): 020203.
    [7] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用[J]. 物理学报, 2012,61(18): 180505-1-180505-6.(MA Song-hua, FANG Jian-ping. Peaked soliton solutions and interaction between solitons for the extended (2+1)-dimensional shallow water wave equation[J]. Acta Physica Sinica,2012,61(18): 180505-1-180505-6.(in Chinese))
    [8] 套格图桑, 白玉梅. 非线性发展方程的Riemann theta 函数等几种新解[J]. 物理学报, 2013,62(10): 100201-1-100201-9.(Taogetusang, BAI Yu-mei. Riemann theta function and other several kinds of new solutions of nonlinear evolution equations[J]. Acta Physica Sinica,2013,62(10): 100201-1-100201-9.(in Chinese))
    [9] 杨小锋, 邓子辰, 魏乙. 基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解[J]. 应用数学和力学, 2015,36(10): 1067-1075.(YANG Xiao-feng, DENG Zi-chen, WEI Yi. Traveling wave solutions to the Davey-Stewartson equation with the Riccati-Bernoulli sub-ODE method[J]. Applied Mathematics and Mechanics,2015,36(10): 1067-1075.(in Chinese))
    [10] 那仁满都拉, 额尔敦仓. 立方非线性微结构固体中的对称孤立波及存在条件[J]. 应用数学和力学,2014,35(11):1210-1217.(Narenmandula, Eerduncang. Symmetric solitary waves and their existence conditions in cubic nonlinear microstructured solids[J]. Applied Mathematics and Mechanics,2014,35(11): 1210-1217.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  183
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 修回日期:  2016-08-24
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回