[1] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett,1993,71(13): 1661-1664.
|
[2] |
殷久利, 田立新. 一类非线性方程的compacton解及其移动compacton 解[J]. 物理学报, 2004,53(9): 2821-2827.(YIN Jiu-li, TIAN Li-xin. Compacton solutions and floating compacton solutions of one type of nonlinear equations[J]. Acta Physica Sinica,2004,53(9): 2821-2827.(in Chinese))
|
[3] |
CHEN Yong, LI Biao. New exact travelling wave solutions for generalized Zakharov-Kuznetsov equations using general projective Riccati equation method[J]. Commun Theor Phys,2004,41(1): 1-6.
|
[4] |
Sirendaoerji, SUN Jong. Adirect method for solving sine-Gordon type equations[J]. Phys Lett A ,2002,298(3):133-139.
|
[5] |
Gepreel K A, Omran S. Exact solutions for nonlinear partial fractional differential equations[J]. Chinese Physics B,2012,21(11): 110204.
|
[6] |
Alam M N, Akbar M A, Mohyud-Din S T. A novel (G′/G) -expansion method and its application to the Boussinesq equation[J]. Chinese Physics B,2014,23(2): 020203.
|
[7] |
马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用[J]. 物理学报, 2012,61(18): 180505-1-180505-6.(MA Song-hua, FANG Jian-ping. Peaked soliton solutions and interaction between solitons for the extended (2+1)-dimensional shallow water wave equation[J]. Acta Physica Sinica,2012,61(18): 180505-1-180505-6.(in Chinese))
|
[8] |
套格图桑, 白玉梅. 非线性发展方程的Riemann theta 函数等几种新解[J]. 物理学报, 2013,62(10): 100201-1-100201-9.(Taogetusang, BAI Yu-mei. Riemann theta function and other several kinds of new solutions of nonlinear evolution equations[J]. Acta Physica Sinica,2013,62(10): 100201-1-100201-9.(in Chinese))
|
[9] |
杨小锋, 邓子辰, 魏乙. 基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解[J]. 应用数学和力学, 2015,36(10): 1067-1075.(YANG Xiao-feng, DENG Zi-chen, WEI Yi. Traveling wave solutions to the Davey-Stewartson equation with the Riccati-Bernoulli sub-ODE method[J]. Applied Mathematics and Mechanics,2015,36(10): 1067-1075.(in Chinese))
|
[10] |
那仁满都拉, 额尔敦仓. 立方非线性微结构固体中的对称孤立波及存在条件[J]. 应用数学和力学,2014,35(11):1210-1217.(Narenmandula, Eerduncang. Symmetric solitary waves and their existence conditions in cubic nonlinear microstructured solids[J]. Applied Mathematics and Mechanics,2014,35(11): 1210-1217.(in Chinese))
|