留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带控制面机翼结构基于弧长数值连续法的颤振特征研究

陈恒 王扬渝 金江明

陈恒, 王扬渝, 金江明. 带控制面机翼结构基于弧长数值连续法的颤振特征研究[J]. 应用数学和力学, 2017, 38(7): 769-779. doi: 10.21656/1000-0887.370223
引用本文: 陈恒, 王扬渝, 金江明. 带控制面机翼结构基于弧长数值连续法的颤振特征研究[J]. 应用数学和力学, 2017, 38(7): 769-779. doi: 10.21656/1000-0887.370223
CHEN Heng, WANG Yang-yu, JIN Jiang-ming. Flutter Characteristics Analysis of 2D Rigid Airfoils With Control Surface Based on the Arc-Length Numerical Continuation Method[J]. Applied Mathematics and Mechanics, 2017, 38(7): 769-779. doi: 10.21656/1000-0887.370223
Citation: CHEN Heng, WANG Yang-yu, JIN Jiang-ming. Flutter Characteristics Analysis of 2D Rigid Airfoils With Control Surface Based on the Arc-Length Numerical Continuation Method[J]. Applied Mathematics and Mechanics, 2017, 38(7): 769-779. doi: 10.21656/1000-0887.370223

带控制面机翼结构基于弧长数值连续法的颤振特征研究

doi: 10.21656/1000-0887.370223
基金项目: 国家自然科学基金(51405440);浙江省自然科学基金(LY13E050018)
详细信息
    作者简介:

    陈恒(1982—),男,讲师,博士(通讯作者. E-mail: hengchen@zjut.edu.cn).

  • 中图分类号: O322;V215.3+4

Flutter Characteristics Analysis of 2D Rigid Airfoils With Control Surface Based on the Arc-Length Numerical Continuation Method

Funds: The National Natural Science Foundation of China(51405440)
  • 摘要: 以三自由度二元机翼为研究对象,将浮沉位移和俯仰位移方向的非线性刚度简化为立方非线性,对于存在间隙的控制面采用双线性刚度代替.考虑准定常气流,建立气动弹性运动方程,通过数值模拟构造峰值-峰值图,反映其在不同气流速度下的振动特征.通过弧长数值连续法构造系统的分岔图,结合Floquet算子研究其稳定性及其分岔类型,所得分岔图和数值模拟的结果相吻合.由分岔图可得系统由于控制面双线性的存在,导致机翼结构振动形态多变,存在多个分岔点和多个不稳定区间,不仅存在极限环振动和非光滑准周期振动,而且在某些不稳定区间出现混沌现象.
  • [1] Bunton R W, Denegri C W. Limit cycle oscillation characteristics of fighter aircraft[J]. Journal of Aircraft, Engineering Note,2000,37(5): 916-918.
    [2] Gilliatt H C, Strganac T W, Kurdila A J. Nonlinear aeroelastic response of an airfoil[C]//35th AIAA Aerospace Sciences Meeting and Exhibit . Reno, NV, USA, 1997: AIAA Paper 97-0459.
    [3] Jones D P, Roberts I, Gaitonde A L. Identification of limit cycles for piecewise nonlinear aeroelastic systems[J]. Journal of Fluids and Structures,2007,23(7): 1012-1028.
    [4] TANG De-man, Dowell E H. Experimental and theoretical study of gust response for a wing-store model with freeplay[J]. Journal of Sound and Vibration,2006,295(3/5): 659-684.
    [5] 郭虎伦, 陈予恕. 超声速流中含间隙和立方非线性二元机翼的动力学分析[J]. 应用数学和力学, 2012,33(1): 1-13.(GUO Hu-lun, CHEN Yu-shu. Dynamic analysis of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow[J]. Applied Mathematics and Mechanics,2012,33(1): 1-13.(in Chinese))
    [6] 齐欢欢, 徐鉴, 方明霞. 超音速飞行器机翼颤振的时滞反馈控制[J]. 应用数学和力学, 2016,〖STHZ〗37(2): 210-218. (QI Huan-huan, XU Jian, FANG Ming-xia. Time-delayed feedback control of flutter for supersonic airfoils[J]. Applied Mathematics and Mechanics,2016,37(2): 210-218.(in Chinese))
    [7] 赵永辉, 胡海岩. 大展弦比夹芯翼大攻角颤振分析[J]. 振动工程学报, 2004,17(1): 25-30.(ZHAO Yong-hui, HU Hai-yan. Flutter analysis of a high-aspect-ratio sandwich wing under large angle of attack[J]. Journal of Vibration Engineering,2004,17(1): 25-30. (in Chinese))
    [8] 崔鹏, 韩景龙. 新型运输机机翼的颤振特性分析[J]. 振动工程学报, 2011,24(2): 192-199.(CUI Peng, HAN Jing-long. Flutter analysis of new transport-type wings[J]. Journal of Vibration Engineering,2011,24(2): 192-199.(in Chinese))
    [9] 周秋萍, 邱志平. 机翼带外挂系统极限环颤振的区间分析[J]. 航空学报, 2010,31(3): 514-518.(ZHOU Qiu-ping, QIU Zhi-ping. Interval analysis for limit cycle flutter of a wing with an external store[J]. Acta Aeronautica et Astronautica Sinica,2010,31(3): 514-518.(in Chinese))
    [10] 史爱明, 杨永年, 叶正寅. 带结构刚度非线性的超音速弹翼颤振分析方法研究[J]. 西北工业大学学报, 2003,21(4): 481-485.(SHI Ai-ming, YANG Yong-nian, YE Zheng-yin. Investigation of flutter characteristics of wing with nonlinear stiffness in supersonic flow[J]. Journal of Northwestern Polytechnical University,2003,21(4): 481-485.(in Chinese))
    [11] Vio G A, Cooper J E. Limit cycle oscillation prediction for aeroelastic systems with discrete bilinear stiffness[J]. International Journal of Applied Mathematics and Mechanics,2005,3: 100-119.
    [12] Liu L, Wong Y S, Lee B H K. Application of the centre manifold theory in non-linear aeroelasticity[J]. Journal of Sound and Vibration,2000,234(4): 641-659.
    [13] Levitas J, Weller T, Singer J. Poincaré-like simple cell mapping for non-linear dynamical systems[J]. Journal of Sound and Vibration,1994,176(5): 641-662.
    [14] Raghothama A, Narayanan S. Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method[J]. Journal of Sound and Vibration,1999,226(3): 493-517.
    [15] Dimitriadis G. Bifurcation analysis of aircraft with structural nonlinearity and freeplay using numerical continuation[J]. Journal of Aircraft,2008,45(3): 893-905.
    [16] Kubicek M. Algorithm 502: dependence of solution of nonlinear systems on a parameter[J]. ACM Transactions on Mathematical Software,1976,2(1): 98-107.
    [17] Doedel E J, Champneys A R, Fairgrieve T F, et al. AUTO97-AUTO2000: continuation and bifurcation software for ordinary differential equations (with HomCont): user’s guide, tech rept[R]. Montreal, Canada: Concordia University, 2000.
    [18] Dhooge A, Govaerts W, Kuznetsov Y A. MATCONT: a MATLAB package for numerical bifurcation of ODEs[J]. ACM Transactions on Mathematical Software,2003,29(2): 141-164.
    [19] Roberts I, Jones D P, Lieven N A J, et al. Analysis of piecewise linear aeroe-lastic systems using numerical continuation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2002,216(1): 1-11.
  • 加载中
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  190
  • PDF下载量:  640
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-09-13
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回