留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Monte-Carlo随机有限元方法的随机边界条件下自然对流换热不确定性研究

何贻海 姜昌伟 姚鸣 张炳晴 朱炎鹤 张钟庆

何贻海, 姜昌伟, 姚鸣, 张炳晴, 朱炎鹤, 张钟庆. 基于Monte-Carlo随机有限元方法的随机边界条件下自然对流换热不确定性研究[J]. 应用数学和力学, 2017, 38(5): 581-593. doi: 10.21656/1000-0887.370224
引用本文: 何贻海, 姜昌伟, 姚鸣, 张炳晴, 朱炎鹤, 张钟庆. 基于Monte-Carlo随机有限元方法的随机边界条件下自然对流换热不确定性研究[J]. 应用数学和力学, 2017, 38(5): 581-593. doi: 10.21656/1000-0887.370224
HE Yi-hai, JIANG Chang-wei, YAO Ming, ZHANG Bing-qing, ZHU Yan-he, ZHANG Zhong-qing. Uncertainty Research of Natural Convection Heat Transfer Under Stochastic Boundary Condition Based on the Monte-Carlo Stochastic Finite Element Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 581-593. doi: 10.21656/1000-0887.370224
Citation: HE Yi-hai, JIANG Chang-wei, YAO Ming, ZHANG Bing-qing, ZHU Yan-he, ZHANG Zhong-qing. Uncertainty Research of Natural Convection Heat Transfer Under Stochastic Boundary Condition Based on the Monte-Carlo Stochastic Finite Element Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 581-593. doi: 10.21656/1000-0887.370224

基于Monte-Carlo随机有限元方法的随机边界条件下自然对流换热不确定性研究

doi: 10.21656/1000-0887.370224
基金项目: 国家自然科学基金(11572056); 湖南省研究生科研创新项目(CX2016B409);湖南省教育厅重点项目(15A006)
详细信息
    作者简介:

    何贻海(1991—),男,硕士生(E-mail: 645259125@qq.com);姜昌伟(1973—),男,教授,博士,硕士生导师(通讯作者. E-mail: cw_jiang@163.com).

  • 中图分类号: TK124

Uncertainty Research of Natural Convection Heat Transfer Under Stochastic Boundary Condition Based on the Monte-Carlo Stochastic Finite Element Method

Funds: The National Natural Science Foundation of China(11572056)
  • 摘要: 为分析边界条件不确定性对方腔内自然对流换热的影响,发展了一种求解随机边界条件下自然对流换热不确定性传播的Monte-Carlo随机有限元方法.通过对输入参数场随机边界条件进行Karhunen-Loeve展开及基于Latin(拉丁)抽样法生成边界条件随机样本,数值计算了不同边界条件随机样本下方腔内自然对流换热流场与温度场,并用采样统计方法计算了随机输出场的平均值与标准偏差.根据计算框架编写了求解随机边界条件下方腔内自然对流换热不确定性的MATLAB随机有限元程序,分析了随机边界条件相关长度与方差对自然对流不确定性的影响.结果表明:平均温度场及流场与确定性温度场及流场分布基本相同;随机边界条件下Nu数概率分布基本呈现正态分布,平均Nu数随着相关长度和方差增加而增大;方差对自然对流换热的影响强于相关长度的影响.
  • [1] 李贝贝, 严祯荣, 陈建, 等. 充满多孔介质的方腔内双扩散自然对流格子Boltzmann模拟[J]. 应用数学和力学, 2016,37(2): 184-194.(LI Bei-bei, YAN Zhen-rong, CHEN Jian, et al. Lattice Boltzmann simulation of double diffusive natural convection in a square enclosure filled with porous medium[J]. Applied Mathematics and Mechanics, 2016,37(2): 184-194.(in Chinese))
    [2] 杨征, 陈海生, 王亮, 等. 竖直圆柱形水箱保温过程热分层现象与机理研究[J]. 中国电机工程学报, 2015,35(6): 1420-1428.(YANG Zheng, CHEN Hai-sheng, WANG Liang, et al. Study on behavior and mechanism of thermal stratification of vertical cylindrical heat storage tank in insulation process[J]. Proceedings of the CSEE, 2015,35(6): 1420-1428.(in Chinese))
    [3] Córdoba P A, Silin N, Dari E A. Natural convection in a cubical cavity filled with a fluid showing temperature-dependent viscosity[J]. International Journal of Thermal Sciences, 2015,98: 255-265.
    [4] Yousaf M, Usman S. Natural convection heat transfer in a square cavity with sinusoidal roughness elements[J]. International Journal of Heat and Mass Transfer, 2015,90: 180-190.
    [5] Dubois F, Lin C A, Tekitek M M. Anisotropic thermal lattice Boltzmann simulation of 2D natural convection in a square cavity[J]. Computers and Fluids,2016,124: 278-287.
    [6] 常春, 张强强, 李鑫. 周向非均匀热流边界条件下太阳能高温吸热管内湍流传热特性研究[J]. 中国电机工程学报, 2012,32(17): 104-109.(CHANG Chun, ZHANG Qiang-qiang, LI Xin. Turbulent heat transfer characteristics in solar thermal absorber tubes with circumferentially non-uniform heat flux boundary condition[J]. Proceedings of the CSEE, 2012,32(17): 104-109.(in Chinese))
    [7] 刘智益, 王晓东, 康顺. 多元多项式混沌法在随机方腔流动模拟中的应用[J]. 工程热物理学报, 2012,33(3): 419-422.(LIU Zhi-yi, WANG Xiao-dong, KANG Shun. Application of multi-dimensional polynomial chaos on numerical simulations of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012,33(3): 419-422.(in Chinese))
    [8] ZHOU Guo-qing, WANG Tao, WANG Jian-zhou, et al. Stochastic analysis of uncertain temperature characteristics for expressway with wide subgrade in cold regions[J]. Cold Regions Science and Technology, 2015,114: 36-43.
    [9] Hosseini S M, Shahabian F. Transient analysis of thermo-elastic waves in thick hollow cylinders using a stochastic hybrid numerical method, considering Gaussian mechanical properties[J]. Applied Mathematical Modelling, 2011,35(10): 4697-4714.
    [10] 云永琥, 陈建军, 刘国梁, 等. 加权最小二乘无网格法的随机稳态温度场分析[J]. 华中科技大学学报(自然科学版), 2015,43(11): 115-120.(YUN Yong-hu, CHEN Jian-jun, LIU Guo-liang, et al. Meshless weighted least square method for thermal analysis of stochastic steady-state temperature field[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015,43(11): 115-120.(in Chinese))
    [11] 王涛, 周国庆. 考虑土性参数不确定性的单管冻结温度场分析[J]. 煤炭学报, 2014,39(6): 1063-1068.(WANG Tao, ZHOU Guo-qing. Analysis of temperature field around a single freezing pipe considering variability of soil parameters[J]. Journal of China Coal Society, 2014,39(6): 1063-1068.(in Chinese))
    [12] 王涛, 周国庆, 阴琪翔, 等. 考虑土性参数不确定性的多圈管冻结温度场分析[J]. 采矿与安全工程学报, 2016,33(2): 297-304.(WANG Tao, ZHOU Guo-qing, YIN Qi-xiang, et al. Analysis of temperature field for multi-circle-pipe freezing considering variability of soil parameters[J]. Journal of Mining & Safety Engineering, 2016,33(2): 297-304.(in Chinese))
    [13] 王涛, 周国庆. 瞬态随机温度场的Neumann展开Monte-Carlo解法[J]. 中国矿业大学学报, 2014,43(1): 43-48.(WANG Tao, ZHOU Guo-qing. Neumann expansion Monte-Carlo method for transient and stochastic temperature field[J]. Journal of China University of Mining & Technology,2014,〖STHZ〗 43(1): 43-48.(in Chinese))
    [14] 王涛, 周国庆. 基于Monte-Carlo法的立井井壁随机温度场分析[J]. 采矿与安全工程学报, 2014,31(4): 612-619.(WANG Tao, ZHOU Guo-qing. Random temperature field of shaft wall based on Monte-Carlo method[J]. Journal of Mining & Safety Engineering, 2014,31(4): 612-619.(in Chinese))
    [15] 孙红, 牛富俊, 陈哲, 等. 基于Monte-Carlo 法的冻土路基随机温度场分析[J]. 上海交通大学学报, 2011,45(5): 738-748.(SUN Hong, NIU Fu-jun, CHEN Zhe, et al. Stochastic temperature field of frozen soil roadbed based on Monte-Carlo method[J]. Journal of Shanghai Jiaotong University, 2011,45(5): 738-748.(in Chinese))
    [16] ZHANG Qian, ZHANG Zhi-yue. Monte Carlo finite volume element methods for the convection-diffusion equation with a random diffusion coefficient[J]. Mathematical Problems in Engineering,2014,2014: 642470.
    [17] XIU Dong-bin, Karniadakis G E. A new stochastic approach to transient heat conduction modeling with uncertainty[J]. International Journal of Heat and Mass Transfer, 2003,46(24): 4681-4693.
    [18] WANG Chong, QIU Zhi-ping. Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters[J]. International Journal of Heat and Mass Transfer,2015,80: 319-328.
    [19] WANG Chong, QIU Zhi-ping, YANG Yao-wen, et al. Uncertainty propagation of heat conduction problem with multiple random inputs[J]. International Journal of Heat and Mass Transfer, 2016,99: 95-101.
    [20] WANG Chong, QIU Zhi-ping, HE Yan-yan. Fuzzy stochastic finite element method for the hybrid uncertain temperature field prediction[J]. International Journal of Heat and Mass Transfer,2015,91: 512-519.
    [21] Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach [M]. New York: Springer-Verlag, 1991.
    [22] Ghanem R. Probabilistic characterization of transport in heterogeneous porous media[J]. Computer Methods in Applied Mechchanics Engineering, 1998,158(3/4): 199-220.
    [23] 史良胜, 蔡树英, 杨金忠. 三维地下水流随机分析的配点法[J]. 水利学报, 2010,41(1): 47-54.(SHI Liang-sheng, CAI Shu-ying, YANG Jin-zhong. The collocation method for stochastic analysis of three-dimensional groundwater flow[J]. Journal of Hydraulic Engineering, 2010,41(1): 47-54.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  243
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-08-13
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回