留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非连续变形分析的MLS后处理方法

孙越 冯象初 肖俊 王颖

孙越, 冯象初, 肖俊, 王颖. 非连续变形分析的MLS后处理方法[J]. 应用数学和力学, 2017, 38(7): 743-754. doi: 10.21656/1000-0887.370259
引用本文: 孙越, 冯象初, 肖俊, 王颖. 非连续变形分析的MLS后处理方法[J]. 应用数学和力学, 2017, 38(7): 743-754. doi: 10.21656/1000-0887.370259
SUN Yue, FENG Xiang-chu, XIAO Jun, WANG Ying. MLS-Based Postprocessing Procedure for Discontinuous Deformation Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(7): 743-754. doi: 10.21656/1000-0887.370259
Citation: SUN Yue, FENG Xiang-chu, XIAO Jun, WANG Ying. MLS-Based Postprocessing Procedure for Discontinuous Deformation Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(7): 743-754. doi: 10.21656/1000-0887.370259

非连续变形分析的MLS后处理方法

doi: 10.21656/1000-0887.370259
基金项目: 国家自然科学基金(61271294;61471338)
详细信息
    作者简介:

    孙越(1983—),男,博士生(通讯作者. E-mail: yue_sun@163.com).

  • 中图分类号: O242.1

MLS-Based Postprocessing Procedure for Discontinuous Deformation Analysis

Funds: The National Natural Science Foundation of China(61271294;61471338)
  • 摘要: 非连续变形分析(discontinuous deformatrion analysis, DDA)通过引入虚拟节理网格将块体离散成子块体系统进行断裂扩展数值模拟.针对这种方法难以获得精确块体应力分布的问题, 提出一种基于无网格法移动最小二乘(moving least squares, MLS)插值的应力恢复算法.利用DDA计算得到的节点位移, 通过恰当构造MLS形函数及其导数, 推导了块体任意点应力的计算公式.数值算例将基于MLS后处理的结果与解析解及平均值法后处理结果进行比较, 验证了所提出方法的精确性和有效性.
  • [1] SHI Gen-hua. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block systems[D]. Berkeley, SF, USA: University of California, Berkeley, 1988.
    [2] JIAO Yu-yong, ZHANG Huan-qiang, ZHANG Xiu-li, et al. A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(5): 457-481.
    [3] Morgan W E, Aral M M. An implicitly coupled hydro-geomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2015,73: 82-94.
    [4] ZHENG Hong, LI Xiao-kai. Mixed linear complementarity formulation of discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2015,75: 23-32.
    [5] 邬爱清, 刘晓莹, 张杨, 等. 基于DDA的弹性力学全高阶多项式位移逼近方法及其实例验证[J]. 固体力学学报, 2014,35(2): 142-149.(WU Ai-qing, LIU Xiao-ying, ZHANG Yang, et al. A DDA based complete and high order polynomial displacement approximation method in elastic mechanics and its cases verification[J]. Chinese Journal of Solid Mechanics,2014,35(2): 142-149.(in Chinese))
    [6] Beyabanaki S A R, Jafari A, Biabanaki S O R. Nodal-based three-dimensional discontinuous deformation analysis (3-D DDA)[J]. Computers and Geotechnics,2009,36(3): 359-372.
    [7] CHOO Ling-qian, ZHAO Zhi-ye, CHEN Hui-mei, et al. Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method[J]. Computers and Geotechnics,2016,76: 12-22.
    [8] 马永政, 郑宏, 李春光. 耦合无网格法的非连续变形分析法研究[J]. 岩石力学与工程学报, 2007,26(S2): 4195-4201.(MA Yong-zheng, ZHENG Hong, LI Chun-guang. Research on discontinuous deformation analysis coupled with meshfree methods[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S2): 4195-4201.(in Chinese))
    [9] 马永政, 郑宏, 李春光. 应用自然邻接点插值法的块体非连续变形分析[J]. 岩土力学, 2008,29(1): 119-124.(MA Yong-zheng, ZHENG Hong, LI Chun-guang. Applying natural neighbor interpolation to discontinuous deformation analysis of block system[J]. Rock and Soil Mechanics,2008,29(1): 119-124.(in Chinese))
    [10] 马永政, 蔡可键, 郑宏. 混合多位移模式的非连续变形分析法研究[J]. 岩土力学, 2016,37(3): 867-874.(MA Yong-zheng, CAI Ke-jian, ZHENG Hong. An analysis of discontinuous deformation with mixed multiple deformation modes[J]. Rock and Soil Mechanics,2016,37(3): 867-874.(in Chinese))
    [11] NING You-jun, YANG Jun, AN Xin-mei, et al. Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework[J]. Computers and Geotechnics,2011,38(1): 40-49.
    [12] JIAO Yu-yong, ZHANG Xiu-li, ZHAO Jian. Two-dimensional DDA contact constitutive model for simulating rock fragmentation[J]. Journal of Engineering Mechanics,2012,138(2): 199-209.
    [13] ZHAO Zhi-ye, GU Jiong. Stress recovery procedure for discontinuous deformation analysis[J]. Advances in Engineering Software,2009,40(1): 52-57.
    [14] 孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xin-zhi, LI Xiao-lin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
    [15] Tabbara M, Blacker T, Belytschko T. Finite element derivative recovery by moving least square interpolants[J]. Computer Methods in Applied Mechanics and Engineering,1994,117(1/2): 211-223.
    [16] Bordas S, Duflot M. Derivative recovery and a posteriori error estimate for extended finite elements[J]. Computer Methods in Applied Mechanics and Engineering,2007,96(35/36): 3381-3399.
    [17] Ródenas J J, González-Estrada O A, Fuenmayor F J, et al. Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM[J]. Computational Mechanics,2013,52(2): 321-344.
    [18] SUN Yue, CHEN Qian, FENG Xiang-chu, et al. Discontinuous deformation analysis enriched by the bonding block model[J]. Mathematical Problems in Engineering,2015,2015: 723263. doi: 10.1155/2015/723263.
    [19] 邬爱清, 冯细霞, 卢波. 非连续变形分析中时间步及弹簧刚度取值研究[J]. 岩土力学, 2015,36(3): 891-897.(WU Ai-qing, FENG Xi-xia, LU Bo. Parametric research on time step and spring stiffness in DDA[J]. Rock and Soil Mechancis,2015,36(3): 891-897.(in Chinese))
    [20] Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. New York: McGraw-Hill Companies Inc, 1970.
  • 加载中
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  168
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-24
  • 修回日期:  2016-11-18
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回