留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用全新G′/(G+G′)展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组

石兰芳 聂子文

石兰芳, 聂子文. 应用全新G′/(G+G′)展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组[J]. 应用数学和力学, 2017, 38(5): 539-552. doi: 10.21656/1000-0887.370269
引用本文: 石兰芳, 聂子文. 应用全新G′/(G+G′)展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组[J]. 应用数学和力学, 2017, 38(5): 539-552. doi: 10.21656/1000-0887.370269
SHI Lan-fang, NIE Zi-wen. Solutions to the Nonlinear Schrödinger Equation and Coupled Nonlinear Schrödinger Equations With a New G′/(G+G′)-Expansion Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552. doi: 10.21656/1000-0887.370269
Citation: SHI Lan-fang, NIE Zi-wen. Solutions to the Nonlinear Schrödinger Equation and Coupled Nonlinear Schrödinger Equations With a New G′/(G+G′)-Expansion Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552. doi: 10.21656/1000-0887.370269

应用全新G′/(G+G′)展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组

doi: 10.21656/1000-0887.370269
基金项目: 国家自然科学基金(11202106;61201444);教育部高等学校博士学科点专项科研基金(20123228120005) ;江苏省“信息与通信工程”优势学科建设基金;江苏省自然科学基金(BK20131005);江苏省青蓝工程和江苏省高校自然科学研究基金(13KJB170016)
详细信息
    作者简介:

    石兰芳(1976—),女,副教授,博士,硕士生导师(通讯作者. E-mail: shilf108@163.com);聂子文(1993—),男,硕士生(E-mail: niezw109@163.com).

  • 中图分类号: O175.29

Solutions to the Nonlinear Schrödinger Equation and Coupled Nonlinear Schrödinger Equations With a New G′/(G+G′)-Expansion Method

Funds: The National Natural Science Foundation of China(11202106; 61201444)
  • 摘要: 研究了一种全新的G′/(G+G′)展开方法,并应用这种方法讨论了广义非线性Schrödinger方程和一类耦合非线性Schrödinger方程组新形式的精确解,包括双曲余切函数解、余切函数解和有理函数解.全新G′/(G+G′)展开方法不但直接而有效地求出方程的新精确解,而且扩大了解的范围,这种新方法对于研究偏微分方程具有广泛的应用意义.
  • [1] Rogers C, Shadwick W F. Backlund Transformations and Their Applications [M]. New York: Academic Press, 1982.
    [2] Hirota R. Exact solution of the Korteweg-de-Vries equation for multiple collisions of solitons[J]. Physical Review Letters,1971,27(18): 1192-1194.
    [3] Malfliet W. Solitary wave solutions of nonlinear wave equations[J]. American Journal of Physics,1992,60(7): 650-654.
    [4] Wazwaz A M. The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations[J]. Applied Mathematics and Computation,2007,188(2): 1467-1475.
    [5] Abdou M A. The extended F -expansion method and its application for a class of nonlinear evolution equations[J].Chaos, Solitons & Fractals,2007,31(1): 95-104.
    [6] HE Ji-huan, WU Xu-hong. Exp-function method for nonlinear wave equations[J]. Chaos, Solitons & Fractals,2006,30(3): 700-708.
    [7] Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform [M]. Cambridge: Cambridge University Press, 1991.
    [8] 石兰芳, 汪维刚, 莫嘉琪. 高维扰动破裂孤子方程行波解的渐近解法[J]. 应用数学, 2014,27(2): 317-321.(SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Asymptotic solving method of traveling solution for higher dimensional disturbed breaking solution equation[J]. Mathematica Applicata,2014,27(2): 317-321.(in Chinese))
    [9] SHI Lan-fang, CHEN Cai-sheng, ZHOU Xian-chun. The extended auxiliary equation method for the KdV equation with variable coefficients[J]. Chinese Physics B,2011,20(10): 100507-1-100507-5.
    [10] 许丽萍, 阮苗, 张金良. 光纤中两个高阶变系数薛定谔方程的精确解[J]. 工程数学学报, 2008,25(6): 1044-1050.(XU Li-ping, RUAN Miao, ZHANG Jin-liang. Exact wave solutions of two higher order nonlinear Schrdinger equations with variable-coefficients[J]. Chinese Journal of Engineering Mathematics,2008,25(6): 1044-1050.(in Chinese))
    [11] 陈娟. 一类非线性Schrdinger方程的Jacobi椭圆函数周期解[J]. 应用数学学报, 2014,37(4): 656-661.(CHEN Juan. Periodic wave solutions expressed by Jacobi elliptic functions for a class of nonlinear Schrdinger equation[J]. Acta Mathematica Applicatae Sinica,2014,37(4): 656-661.(in Chinese))
    [12] WANG Ming-liang, LI Xiang-zheng, ZHANG Jin-liang. The G′/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Physics Letters A,2008,372(4): 417-423.
    [13] Arbabi S, Najafi M. Exact solitary wave solutions of the complex nonlinear Schrdinger equations[J]. Optik,2016,127(11): 4682-4688.
    [14] DENG Xi-jun. Exact peaked wave solution of CH- γ equation by the first-integral method[J]. Applied Mathematics and Computation,2008,206(2): 321-326.
    [15] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解[J]. 物理学报, 2013,62(4): 040203-1-040203-6.(SHI Lan-fang, MO Jia-qi. Solution of a class of rotational relativistic rotation dynamic equation using the generalized variational iteration theory[J]. Acta Physica Sinica,2013,62(4): 040203-1-040203-6.(in Chinese))
    [16] 石兰芳, 林万涛, 林一骅, 等. 一类非线性方程类孤波的近似解法[J]. 物理学报, 2013,62(1): 010201-1-010201-5.(SHI Lan-fang, LIN Wan-tao, LIN Yi-hua, et al. Approximate method of solving solitary-like wave for a class of nonlinear equation[J]. Acta Physica Sinica,2013,62(1): 010201-1-010201-5.(in Chinese))
    [17] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程类孤子同伦近似解析解[J]. 物理学报, 2009,58(12): 8123-8126.(SHI Lan-fang, MO Jia-qi. Soliton-like homotopic approximate analytic solution for a class of disturbed nonlinear evolution equation[J]. Acta Physica Sinica,2009,58(12): 8123-8126.(in Chinese))
    [18] 冯依虎, 石兰芳, 许永红, 等. 一类大气尘埃等离子体扩散模型研究[J]. 应用数学和力学, 2015,36(6): 639-650.(FENG Yi-hu, SHI Lan-fang, XU Yong-hong, et al. Study on a class of diffusion models for dust plasma in atmosphere[J]. Applied Mathematics and Mechanics,2015,36(6): 639-650.(in Chinese))
    [19] 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a class of nonlinear strong-damp disturbed evolution equations[J]. Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
    [20] 石兰芳, 欧阳成, 陈丽华, 等. 一类大气等离子体反应扩散模型的解法[J]. 物理学报, 2012,61(5): 050203-1-050203-6.(SHI Lan-fang, OUYANG Cheng, CHEN Li-hua, et al. Solving method of a class of reactive diffusion model for atmospheric plasmas[J]. Acta Physica Sinica,2012,61(5): 050203-1-050203-6.(in Chinese))
    [21] 石兰芳, 林万涛, 温朝辉, 等. 一类奇摄动Robin问题的内部冲击波解[J]. 应用数学学报, 2013,36(1): 108-114.(SHI Lan-fang, LIN Wan-tao, WEN Zhao-hui, et al. Internal shock solution for a class of singularly perturbed Robin problems[J]. Acta Mathematica Applicatae Sinica,2013,36(1): 108-114.(in Chinese))
    [22] 张善卿, 李志斌. 非线性耦合Schrdinger-KdV方程组新的精确解析解[J]. 物理学报, 2002,51(10): 2197-2201.(ZHANG Shan-qing, LI Zhi-bin. New explicit exact solutions to nonlinearly coupled Schrdinger-KdV equations[J]. Acta Physica Sinica,2002,51(10): 2197-2201.(in Chinese))
    [23] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程[J]. 物理学报, 2005,54(3): 996-1001.(RUAN Hang-yu, LI Hui-jun. Solution of the nonlinear Schrdinger equation using the generalized Lie group reduction method[J]. Acta Physica Sinica,2005,54(3): 996-1001.(in Chinese))
    [24] Najafi M, Arbabi S. Exact solutions of five complex nonlinear Schrdinger equations by semi-inverse variational principle[J]. Communications in Theoretical Physics,2014,62(3): 301-307.
    [25] Najafi M, Arbabi S. Traveling wave solutions for nonlinear Schrdinger equations[J]. Optik,2015,126(23): 3992-3997.
    [26] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索[J]. 物理学报,2004,53(11): 3652-3656.(ZHANG Jie-fang, XU Chang-zhi, HE Bao-gang. The variable separation approach and study on solving the variable-coefficient nonlinear Schrdinger equation[J]. Acta Physica Sinica,2004,53(11): 3652-3656.(in Chinese))
    [27] ZHAO Dun, LUO Hong-gang, WANG Shun-jin, et al. A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schr?dinger equation[J]. Chaos, Solitons & Fractals,2005,24(2): 533-547.
    [28] 张金良, 李向正, 王明亮. 两个非线性耦合方程组的复tanh函数解[J]. 工程数学学报, 2005,22(4): 725-728.(ZHANG Jin-liang, LI Xiang-zhang, WANG Ming-liang. The complex tanh-function solutions to two nonlinear coupled evolution equations[J]. Chinese Journal of Engineering Mathematics,2005,22(4): 725-728.(in Chinese))
    [29] TIAN Bao, GAO Yi-tian. Variable-coefficient higher-order nonlinear Schrdinger model in optical fibers: new transformation with Burstons, brightons and symbolic computation[J]. Physics Letters A,2006,359(3): 241-248.
    [30] Baboiu D M, Stegeman G I, Torner L. Interaction of one-dimensional bright solitary waves in quadratic media[J]. Optics Letters,1995,20(22): 2282-2284.
  • 加载中
计量
  • 文章访问数:  1426
  • HTML全文浏览量:  257
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-05
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回