留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征正交分解的材料微结构参数化表征模型及等效性能优化设计

郭志文 肖曼玉 夏凉

郭志文, 肖曼玉, 夏凉. 基于特征正交分解的材料微结构参数化表征模型及等效性能优化设计[J]. 应用数学和力学, 2017, 38(7): 727-742. doi: 10.21656/1000-0887.370279
引用本文: 郭志文, 肖曼玉, 夏凉. 基于特征正交分解的材料微结构参数化表征模型及等效性能优化设计[J]. 应用数学和力学, 2017, 38(7): 727-742. doi: 10.21656/1000-0887.370279
GUO Zhi-wen, XIAO Man-yu, XIA Liang. A POD-Based Parameterization Model for Material Microstructure Representation and Its Application to Optimal Design of Material Effective Mechanical Properties[J]. Applied Mathematics and Mechanics, 2017, 38(7): 727-742. doi: 10.21656/1000-0887.370279
Citation: GUO Zhi-wen, XIAO Man-yu, XIA Liang. A POD-Based Parameterization Model for Material Microstructure Representation and Its Application to Optimal Design of Material Effective Mechanical Properties[J]. Applied Mathematics and Mechanics, 2017, 38(7): 727-742. doi: 10.21656/1000-0887.370279

基于特征正交分解的材料微结构参数化表征模型及等效性能优化设计

doi: 10.21656/1000-0887.370279
基金项目: 国家自然科学基金青年科学基金(11302173);陕西省自然科学基金(2017JQ1037)
详细信息
    作者简介:

    郭志文(1991—),男,硕士生;肖曼玉(1980—),女,副教授(通讯作者. E-mail: manyuxiao@nwpu.edu.cn).

  • 中图分类号: V214.8

A POD-Based Parameterization Model for Material Microstructure Representation and Its Application to Optimal Design of Material Effective Mechanical Properties

Funds: The National Science Fund for Young Scholars of China(11302173)
  • 摘要: 随着计算能力的不断发展,近年来基于材料微结构图像的材料等效性能数值模拟越来越受到学者们的重视.在此背景下,提出了一种针对材料微结构图像的高效参数化表征模型.通过特征正交分解(proper orthogonal decomposition,POD)对已有材料微结构图像数据进行特征分析,得到近似描述该类材料微结构的特征缩减基.应用移动最小二乘(moving least squares,MLS)法建立特征缩减基映射系数的响应面模型,拟合得到任意给定参量相应的缩减基映射系数.利用拟合缩减基系数可获得任意给定参量对应的微结构图像矩阵.该参数化表征模型被用于表征含椭球夹杂的两相材料(2-phase composite)的二维情形, 并进一步应用于这类复合材料宏观等效力学性能的优化设计.
  • [1] Sonon B, Franois B, Massart T J. A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs[J]. Computer Methods in Applied Mechanics and Engineering,2012,223/224: 103-122.
    [2] XU Ying-jie, ZHANG Wei-hong. Numerical modeling of oxidized microstructure and degraded properties of 2D C/SiC composites in air oxidizing environments below 800 ℃[J]. Materials Science & Engineering: A,2011,528(27): 7974-7982.
    [3] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟[J]. 物理学报, 2009,58(6): 4041-4052.(REN Huai-hui, LI Xu-dong. 3D material microstructures design and numerical simulation [J]. Acta Physica Sinica,2009,58(6): 4041-4052.(in Chinese))
    [4] Guessasma S, Babin P, Della Valle G, et al. Relating cellular structure of open solid food foams to their Young’s modulus: finite element calculation[J]. International Journal of Solids and Structures,2008,45(10): 2881-2896.
    [5] XU Ying-jie, ZHANG Wei-hong. A strain energy model for the prediction of the effective coefficient of thermal expansion of composite materials[J]. Computational Materials Science,2012,53(1): 241-250.
    [6] Feyel F, Chaboche J L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[J]. Computer Methods in Applied Mechanics and Engineering,2000,183(3/4): 309-330.
    [7] Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering,1998,155(1/2): 181-192.
    [8] Ibrahimbegovic A, Papadrakakis M. Multi-scale models and mathematical aspects in solid and fluid mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(21/22): 1241.
    [9] Fullwood D T, Niezgoda S R, Adams B L, et al. Microstructure sensitive design for performance optimization[J]. Progress in Materials Science,2010,55(6): 477-562.
    [10] Torquato S. Optimal design of heterogeneous materials[J]. Annual Review of Materials Research,2010,40: 101-129.
    [11] Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach[J]. Computer Methods in Applied Mechanics and Engineering,1999,172(1/4): 109-143.
    [12] Mishnaevsky Jr L L. Automatic voxel-based generation of 3D microstructural FE models and its application to the damage analysis of composites[J]. Materials Science and Engineering: A,2005,407(1/2): 11-23.
    [13] Landi G, Niezgoda S R, Kalidindi S R. Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems [J]. Acta Materialia,2010,58(7): 2716-2725.
    [14] Mishnaevsky Jr L. Micromechanical analysis of nanocomposites using 3D voxel based material model[J]. Composites Science and Technology,2012,72(10): 1167-1177.
    [15] Legrain G, Chevaugeon N, Dréau K. High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation[J]. Computer Methods in Applied Mechanics and Engineering,2012,241/244: 172-189.
    [16] Lian W D, Legrain G, Cartraud P. Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches[J]. Computational Mechanics,2013,51(3): 279-293.
    [17] Engler O, Hirsch J. Texture control by thermomechanical processing of AA6 xxx Al-Mg-Si sheet alloys for automotive applications a review[J]. Materials Science and Engineering,2002,336(1/2): 249-262.
    [18] CHEN Yong-jin, ZHANG Bin, DING Qing-qing, et al. Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ[J]. Journal of Alloys and Compounds,2016,678: 185-192.
    [19] 顾善群, 李金焕, 王海洋, 等. 石墨烯/纳米银复合材料的制备、微结构及其导电性能[J]. 复合材料学报, 2015,32(4): 1061-1066.(GU Shan-qun, LI Jin-huan, WANG Hai-yang, et al. Preparation of grapheme/nano-Ag composite, microstructure and electrical property[J]. Acta Materiae Composite Sinica,2015,32(4): 1061-1066.(in Chinese))
    [20] Engler O, Lchte L, Hirsch J. Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets[J]. Acta Materialia,2007,55(16): 5449-5463.
    [21] Kavoosi V, Abbasi S M, Ghazi Mirsaed S M, et al. Influence of cooling rate on the solidification behavior and microstructure of IN738LC superalloy[J]. Journal of Alloys and Compounds,2016,680: 291-300.
    [22] Wynne B P, Gorley M J, Zheng P F, et al. An analysis of the microstructure of spark plasma sintered and hot isostatically pressed V—4Cr—4Ti—1.8Y—0.4Ti3SiC2alloy and its thermal stability[J]. Journal of Alloys and Compounds,2016,680: 506-511.
    [23] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1/3): 50-79.
    [24] Coelho R F, Breitkopf P, Knopf-Lenoir C. Model reduction for multidisciplinary optimization-application to a 2D wing[J]. Structural and Multidisciplinary Optimization,2008,37(1): 29-48.
    [25] Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics,1993,25: 539-575.
    [26] Willcox K, Peraire J. Balanced model reduction via the proper orthogonal decomposition[J]. AIAA Journal,2002,40(11): 2323-2330.
    [27] Hall K C, Thomas J P, Dowell E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal,2000,38(10): 1853-1862.
    [28] Kim T, Bussoletti J E. An optimal reduced-order aeroelastic modeling based on a response-based modal analysis of unsteady CFD models[C]// 〖STBX〗19th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-Located Conferences.Anaheim, CA, 2001.
    [29] Thomas J P, Dowell E H, Hall K C. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced-order models[J]. Journal of Aircraft,2003,40(3): 544-551.
    [30] Lieu T, Lesoinne M. Parameter adaptation of reduced order models for three-dimensional flutter analysis[C]//〖STBX〗42nd AIAA Aerospace Sciences Meeting and Exhibit.Reno, Nevada, 2004.
    [31] XIAO Man-yu, Breitkopf P, Coelho R F, et al. Model reduction by CPOD and Kriging: application to the shape optimization of an intake port[J]. Structural and Multidisciplinary Optimization,2010,41(4): 555-574.
    [32] XIAO Man-yu, Breitkopf P, Coelho R F, et al. Constrained proper orthogonal decomposition based on QR -factorization for aerodynamical shape optimization[J]. Applied Mathematics and Computation,2013,223: 254-263.
    [33] Raghavan B, XIA Liang, Breitkopf P, et al. Towards simultaneous reduction of both input and output spaces for interactive simulation based structural design[J]. Computer Methods in Applied Mechanics and Engineering,2013,265: 174-185.
    [34] XIA Liang, Raghavan B, Breitkopf P, et al. Numerical material representation using proper orthogonal decomposition and diffuse approximation[J]. Applied Mathematics and Computation,2013,224: 450-462.
    [35] Kersaudy P, Sudret B, Varsier N, et al. A new surrogate modeling technique combining Kriging and polynomial chaos expansions—application to uncertainty analysis in computational dosimetry[J]. Journal of Computational Physics,2015,286: 103-117.
    [36] Pardo-Igúzquiza E, Chica-Olmo M, Luque-Espinar J A, et al. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates[J]. Science of the Total Environment,2015,532: 162-175.
    [37] Lancaster P, Salkauskas K. Surfaces generatedby moving least squares methods[J]. Mathematics of Computation,1981,37: 141-158.
    [38] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37(2): 229-256.
    [39] 曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004,25(1): 84-89.(ZENG Qing-hong, LU De-tang. Curve and surface fitting based on moving least-squares methods[J]. Journal of Engineering Graphics,2004,25(1): 84-89.(in Chinese))
    [40] 单权. 纤维增强复合材料界面相微结构优化设计[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2009.(SHAN Quan. Interphase microstructure optimization of carbon fiber reinfored composite materials[D]. Master Thesis. Harbin: Harbin Engineering University, 2009.(in Chinese))
    [41] 单豪良. 基于胞体模型的颗粒增强复合材料耦合场数值模拟研究[D]. 硕士学位论文. 昆明: 昆明理工大学, 2009.(SHAN Hao-liang. Numerical simulation of particle reinforced composite coupling field based on cell body model[D]. Master Thesis. Kunming: Kunming University of Science and Technology, 2009.(in Chinese))
    [42] Nguyen V P, Lloberas-Valls O, Stroeven M, et al. On the existence of representative volumes for softening quasi-brittle materials—a failure zone averaging scheme[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(45/48): 3028-3038.
    [43] Suquet P. Elements of homogenization theory for inelastic solid mechanics[J]. Lecture Note in Physics,1987,272: 193-278.
    [44] 汤亚男. 基于均匀化理论的材料微结构拓扑优化研究[D]. 硕士学位论文. 湘潭: 湘潭大学, 2011.(TANG Ya-nan. Research of topology optimization design of microstructure for material based on homogenization method[D]. Master Thesis. Xiangtan: Xiangtan University, 2011.(in Chinese))
    [45] Lukkassen D. Some engineering and mathematic aspects on the homogenization method[J]. Composites Engineering,1995,5(5): 519-531.
    [46] 赵继俊. 优化技术与MATLAB优化工具箱[M]. 北京: 机械工业出版社, 2011: 173-181.(ZHAO Ji-jun. Optimization Technology and MATLAB Optimization Toolbox [M]. Beijing: China Machine Press, 2011: 173-181.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1362
  • HTML全文浏览量:  248
  • PDF下载量:  1092
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-10-22
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回