留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维黏弹性力学问题的无网格自然单元法

陈莘莘 钟斌

陈莘莘, 钟斌. 二维黏弹性力学问题的无网格自然单元法[J]. 应用数学和力学, 2017, 38(5): 605-612. doi: 10.21656/1000-0887.370300
引用本文: 陈莘莘, 钟斌. 二维黏弹性力学问题的无网格自然单元法[J]. 应用数学和力学, 2017, 38(5): 605-612. doi: 10.21656/1000-0887.370300
CHEN Shen-shen, ZHONG Bin. A Meshless Natural Element Method for 2D Viscoelastic Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 605-612. doi: 10.21656/1000-0887.370300
Citation: CHEN Shen-shen, ZHONG Bin. A Meshless Natural Element Method for 2D Viscoelastic Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 605-612. doi: 10.21656/1000-0887.370300

二维黏弹性力学问题的无网格自然单元法

doi: 10.21656/1000-0887.370300
基金项目: 国家自然科学基金(11462006;21466012)
详细信息
    作者简介:

    陈莘莘(1975—),男,教授,博士(通讯作者. E-mail: chenshenshen@tsinghua.org.cn).

  • 中图分类号: O39; TB12

A Meshless Natural Element Method for 2D Viscoelastic Problems

Funds: The National Natural Science Foundation of China(11462006;21466012)
  • 摘要: 基于无网格自然单元法,建立了求解二维黏弹性力学问题的一条新途径.基于弹性黏弹性对应原理和Laplace(拉普拉斯)变换技术,首先将黏弹性问题转换成Laplace域内与弹性力学问题相同的形式,然后推导出基于自然单元法分析黏弹性问题的基本公式.作为一种新兴的无网格数值计算方法,自然单元法的实质是一种基于自然邻近插值的Galerkin(伽辽金)法.相对于其他无网格法,自然单元法的形函数具有插值性和支持域各向异性等特点.算例结果证明了所提分析方法的有效性.
  • [1] Naguib H E, Park C B. A study on the onset surface melt fracture of polypropylene materials with foaming additives[J]. Journal of Applied Polymer Science,2008,109(6): 3571-3577.
    [2] 陈兵兵, 徐赵东, 朱一强, 等. 加入粘弹性阻尼器的高楼桅杆风振响应分析[J]. 华东交通大学学报, 2014,31(5): 77-85.(CHEN Bing-bing, XU Zhao-dong, ZHU Yi-qiang, et al. Wind vibration response analysis of high building masts with viscoelastic dampers[J]. Journal of East China Jiaotong University,2014,31(5): 77-85.(in Chinese))
    [3] Sladek J, Sladek V, Zhang Ch, et al. Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids[J]. Computational Mechanics,2006,37: 279-289.
    [4] 祝彦知, 薛保亮, 王广国. 粘弹性地基上粘弹性地基板的自由振动解析[J]. 岩石力学与工程学报2002,21(1): 112-118.(ZHU Yan-zhi, XUE Bao-liang, WANG Guang-guo. Free vibration analysis of viscoelastic foundation plate on viscoelastic foundation[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(1): 112-118.(in Chinese))
    [5] Christensen R M. Theory of Viscoelasticity [M]. New York: Academia Press, 1971.
    [6] 姚伟岸, 杨海天, 高强. 平面粘弹性问题的辛求解方法[J]. 计算力学学报, 2010,27(1): 14-20.(YAO Wei-an, YANG Hai-tian, GAO Qiang. A new approach to solve plane viscoelastic problems in the symplectic space[J]. Chinese Journal of Computational Mechanics,2010,27(1): 14-20.(in Chinese))
    [7] 丁睿, 姚林泉, 李挺. 粘弹性薄板动力响应问题的多重互易法[J]. 工程数学学报, 2005,22(6): 1006-1012.(DING Rui, YAO Lin-quan, LI Ting. Multiple reciprocity method for solving dynamics response of viscoelastic thin plate[J]. Chinese Journal of Engineering Mathematics,2005,22(6): 1006-1012.(in Chinese))
    [8] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin method[J]. International Journal for Numerical Methods in Engineering,1994,37(2): 229-256.
    [9] 王伟, 伊士超, 姚林泉. 分析复合材料层合板弯曲和振动的一种有效无网格方法[J]. 应用数学和力学, 2015,36(12): 1274-1284.(WANG Wei, YI Shi-chao, YAO Lin-quan. An effective meshfree method for bending and vibration analyses of laminated composite plates[J]. Applied Mathematics and Mechanics,2015,36(12): 1274-1284.(in Chinese))
    [10] 孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xin-zhi, LI Xiao-lin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
    [11] 秦义校, 程玉民. 温度场分析的重构核粒子边界无单元法[J]. 机械工程学报, 2008,44(6): 95-100.(QIN Yi-xiao, CHENG Yu-min. Reproducing kernel particle boundary element-free method for temperature field problems[J]. Chinese Journal of Mechanical Engineering,2008,44(6): 95-100.(in Chinese))
    [12] Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature,1995,376: 655-660.
    [13] Sukumar N, Moran T, Belytschko T. The natural element method in solid mechanics[J].International Journal for Numerical Methods in Engineering,1998,43(5): 839-887.
    [14] 张勇, 易红亮, 谈和平. 求解辐射导热耦合换热的自然单元法[J]. 工程热物理学报, 2013,34(5): 918-922.(ZHANG Yong, YI Hong-liang, TAN He-ping. Natural element method for coupled radiative and conductive heat transfer[J]. Journal of Engineering Thermophysics,2013,34(5): 918-922.(in Chinese))
    [15] 江涛, 章青. 直接增强自然单元法计算应力强度因子[J]. 计算力学学报, 2010,27(2): 264-269.(JIANG Tao, ZHANG Qing. Computing stress intensity factor by enriched natural element method[J]. Chinese Journal of Computational Mechanics,2010,27(2): 264-269.(in Chinese))
    [16] 曾祥勇, 朱爱军, 邓安福. Winkler地基上厚板分析的自然单元法[J]. 固体力学学报, 2008,29(2): 163-169.(ZENG Xiang-yong, ZHU Ai-jun, DENG An-fu. Natural element method for analysis of thick plates lying over Winkler foundations[J]. Chinese Journal of Solid Mechanics,2008,29(2): 163-169.(in Chinese))
    [17] Stehfest H. Algorithm 368: numerical inversion of Laplace transform[J]. Communications of the ACM,1970,13(1): 47-49.
    [18] Sim W J, Kwak B M. Linear viscoelastic analysis in time domain by boundary element method[J]. Computers & Structures,1988,29(4): 531-539.
  • 加载中
计量
  • 文章访问数:  1342
  • HTML全文浏览量:  186
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 修回日期:  2016-11-22
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回