[1] |
马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 1-24.(MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematics Modeling and Research of Infectious Disease Dynamics [M]. Beijing: Science Press, 2004: 1-24.(in Chinese))
|
[2] |
王拉娣. 传染病动力学模型及控制策略研究[D]. 博士学位论文. 上海: 上海大学, 2005: 1-9.(WANG Ladi. Infectious disease dynamics and controlling strategy[D]. PhD Thesis. Shanghai: Shanghai University, 2005: 1-9.(in Chinese))
|
[3] |
谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015,36(10): 1107-1116.(XIE Yingchao, CHENG Yan, HE Tianyu. Global stability of a class of delayed epidemic models with nonlinear incidence rates[J]. Applied Mathematics and Mechanics,2015,36(10): 1107-1116.(in Chinese))
|
[4] |
PENG Rui, ZHAO Xiaoqiang. A reaction-diffusion SIS epidemic model in a time-periodic environment[J]. Nonlinearity,2012,25(5): 1451-1471.
|
[5] |
VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1): 29-48.
|
[6] |
杨亚莉, 李建全, 刘万萌, 等. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013,34(12): 1291-1299.(YANG Yali, LI Jianquan, LIU Wanmeng, et al. Global stability of a vector-borne epidemic model with distributed delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2013,34(12): 1291-1299.(in Chinese))
|
[7] |
THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics,2009,70(1): 188-211.
|
[8] |
BACAR N. Genealogy with seasonality, the basic reproduction number, and the influenza pandemic[J]. Journal of Mathematical Biology,2011,62(5): 741-762.
|
[9] |
WANG Wendi, ZHAO Xiaoqiang. Threshold dynamics for compartmental epidemic models in periodic environments[J]. Journal of Dynamics and Differential Equations,2008,20(3): 699-717.
|
[10] |
王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究[J]. 兰州大学学报(自然科学版), 2013,49(4): 535-540.(WANG Zhicheng, WANG Shuangming. Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period[J]. Journal of Lanzhou University(Natural Sciences),2013,49(4): 535-540.(in Chinese))
|
[11] |
WANG Shuangming, ZHANG Liang. Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage[J]. Electronic Journal of Qualitative Theory of Differential Equations,2016,47: 1-25.
|
[12] |
ZHANG Liang, WANG Zhicheng. Spatial dynamics of a diffusive predator-prey model with stage structure[J]. Discrete and Continuous Dynamical Systems—Series B,2015,20(6): 1831-1853.
|
[13] |
王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017,52(1): 81-87.(WANG Shuangming. Dynamical analysis of a class of periodic epidemic model with delay[J]. Journal of Shandong University (Natural Science),2017,52(1): 81-87.(in Chinese))
|
[14] |
ZHAO Xiaoqiang. Basic reproduction ratios for periodic compartmental models with time delay[J]. Journal of Dynamics and Differential Equations,2015,29(1): 1-16.
|
[15] |
ZHANG Liang, WANG Zhicheng, ZHAO Xiaoqiang. Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period[J]. Journal of Differential Equations,2015,258(9): 3011-3036.
|
[16] |
MARTIN R H, SMITH H L. Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society,1990,321(1): 1-44.
|
[17] |
ZAOH Xiaoqiang. Dynamical Systems in Population Biology [M]. New York: Springer-Verlag, 2003: 1-65.
|
[18] |
Hess P. Periodic-Parabolic Boundary Value Problems and Positivity [M]. UK: Longman Scientific and Technical, 1991: 91-93.
|
[19] |
MAGAL P, ZHAO Xiaoqiang. Global attractors and steady states for uniformly persistent dynamical systems[J].SIAM J Math Anal,2005,37: 251-275.
|
[20] |
LOU Yijun, ZHAO Xiaoqiang. Threshold dynamics in a time-delayed periodic SIS epidemic model[J]. Discrete and Continuous Dynamical Systems—Series B,2009,12: 169-186.
|