留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具时滞的周期logistic传染病模型空间动力学研究

王双明 张明军 樊馨蔓

王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究[J]. 应用数学和力学, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301
引用本文: 王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究[J]. 应用数学和力学, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301
WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth[J]. Applied Mathematics and Mechanics, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301
Citation: WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth[J]. Applied Mathematics and Mechanics, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301

一类具时滞的周期logistic传染病模型空间动力学研究

doi: 10.21656/1000-0887.370301
基金项目: 国家自然科学基金(61662066);甘肃科技计划(17JR5RA175);甘肃省高等学校科研项目(2017A-047)
详细信息
    作者简介:

    王双明(1987—),男,硕士(通讯作者. E-mail: wsm@lzufe.edu.cn);张明军(1973—),男,副教授,硕士(E-mail: zhangmjlz@163.com);樊馨蔓(1979—),女,副教授,硕士(E-mail: fanxm1120@163.com).

  • 中图分类号: O175

Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth

Funds: The National Natural Science Foundation of China(61662066)
  • 摘要: 利用动力系统的理论研究一类具有时滞的周期logistic反应扩散传染病模型的动力学.首先证明了周期解半流对应ω算子的全局吸引子的存在性.然后利用次代算子方法引入了模型的基本再生数.最后,利用持久性理论结合比较原理,得到了疾病持久或灭绝的阈值条件:若基本再生数小于1,无病周期解是全局渐近稳定的,疾病将逐渐消失;若基本再生数大于1,系统一致持久,疾病将继续流行并最终形成地方病.
  • [1] 马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 1-24.(MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematics Modeling and Research of Infectious Disease Dynamics [M]. Beijing: Science Press, 2004: 1-24.(in Chinese))
    [2] 王拉娣. 传染病动力学模型及控制策略研究[D]. 博士学位论文. 上海: 上海大学, 2005: 1-9.(WANG Ladi. Infectious disease dynamics and controlling strategy[D]. PhD Thesis. Shanghai: Shanghai University, 2005: 1-9.(in Chinese))
    [3] 谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015,36(10): 1107-1116.(XIE Yingchao, CHENG Yan, HE Tianyu. Global stability of a class of delayed epidemic models with nonlinear incidence rates[J]. Applied Mathematics and Mechanics,2015,36(10): 1107-1116.(in Chinese))
    [4] PENG Rui, ZHAO Xiaoqiang. A reaction-diffusion SIS epidemic model in a time-periodic environment[J]. Nonlinearity,2012,25(5): 1451-1471.
    [5] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1): 29-48.
    [6] 杨亚莉, 李建全, 刘万萌, 等. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013,34(12): 1291-1299.(YANG Yali, LI Jianquan, LIU Wanmeng, et al. Global stability of a vector-borne epidemic model with distributed delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2013,34(12): 1291-1299.(in Chinese))
    [7] THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics,2009,70(1): 188-211.
    [8] BACAR N. Genealogy with seasonality, the basic reproduction number, and the influenza pandemic[J]. Journal of Mathematical Biology,2011,62(5): 741-762.
    [9] WANG Wendi, ZHAO Xiaoqiang. Threshold dynamics for compartmental epidemic models in periodic environments[J]. Journal of Dynamics and Differential Equations,2008,20(3): 699-717.
    [10] 王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究[J]. 兰州大学学报(自然科学版), 2013,49(4): 535-540.(WANG Zhicheng, WANG Shuangming. Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period[J]. Journal of Lanzhou University(Natural Sciences),2013,49(4): 535-540.(in Chinese))
    [11] WANG Shuangming, ZHANG Liang. Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage[J]. Electronic Journal of Qualitative Theory of Differential Equations,2016,47: 1-25.
    [12] ZHANG Liang, WANG Zhicheng. Spatial dynamics of a diffusive predator-prey model with stage structure[J]. Discrete and Continuous Dynamical Systems—Series B,2015,20(6): 1831-1853.
    [13] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017,52(1): 81-87.(WANG Shuangming. Dynamical analysis of a class of periodic epidemic model with delay[J]. Journal of Shandong University (Natural Science),2017,52(1): 81-87.(in Chinese))
    [14] ZHAO Xiaoqiang. Basic reproduction ratios for periodic compartmental models with time delay[J]. Journal of Dynamics and Differential Equations,2015,29(1): 1-16.
    [15] ZHANG Liang, WANG Zhicheng, ZHAO Xiaoqiang. Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period[J]. Journal of Differential Equations,2015,258(9): 3011-3036.
    [16] MARTIN R H, SMITH H L. Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society,1990,321(1): 1-44.
    [17] ZAOH Xiaoqiang. Dynamical Systems in Population Biology [M]. New York: Springer-Verlag, 2003: 1-65.
    [18] Hess P. Periodic-Parabolic Boundary Value Problems and Positivity [M]. UK: Longman Scientific and Technical, 1991: 91-93.
    [19] MAGAL P, ZHAO Xiaoqiang. Global attractors and steady states for uniformly persistent dynamical systems[J].SIAM J Math Anal,2005,37: 251-275.
    [20] LOU Yijun, ZHAO Xiaoqiang. Threshold dynamics in a time-delayed periodic SIS epidemic model[J]. Discrete and Continuous Dynamical Systems—Series B,2009,12: 169-186.
  • 加载中
计量
  • 文章访问数:  1593
  • HTML全文浏览量:  274
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2017-12-21
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回