留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维稳态热传导问题的正六边形流形元研究

谭育新 张慧华 胡国栋

谭育新, 张慧华, 胡国栋. 二维稳态热传导问题的正六边形流形元研究[J]. 应用数学和力学, 2017, 38(5): 594-604. doi: 10.21656/1000-0887.370306
引用本文: 谭育新, 张慧华, 胡国栋. 二维稳态热传导问题的正六边形流形元研究[J]. 应用数学和力学, 2017, 38(5): 594-604. doi: 10.21656/1000-0887.370306
TAN Yu-xin, ZHANG Hui-hua, HU Guo-dong. 2D Steady Heat Conduction Analysis With the Regular Hexagon Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 594-604. doi: 10.21656/1000-0887.370306
Citation: TAN Yu-xin, ZHANG Hui-hua, HU Guo-dong. 2D Steady Heat Conduction Analysis With the Regular Hexagon Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 594-604. doi: 10.21656/1000-0887.370306

二维稳态热传导问题的正六边形流形元研究

doi: 10.21656/1000-0887.370306
基金项目: 国家自然科学基金(11462014);江西省自然科学基金(20151BAB202003);江西省教育厅科技项目(GJJ14526)
详细信息
    作者简介:

    谭育新(1990—),男,硕士生;张慧华(1982—),男,副教授,博士(通讯作者. E-mail: hhzhang@nchu.edu.cn).

  • 中图分类号: O241; TK124

2D Steady Heat Conduction Analysis With the Regular Hexagon Numerical Manifold Method

Funds: The National Natural Science Foundation of China(11462014)
  • 摘要: 发展了用于分析二维稳态热传导问题的多边形数值流形方法(numerical manifold method,NMM).根据热传导问题的控制方程、边界条件以及多边形NMM的温度近似函数,采用修正变分原理导出了多边形NMM求解稳态热传导问题的总体方程,给出了多边形单元上的域积分策略.考虑到NMM中数学覆盖系统可不与物理域边界一致以及规则单元的精度优势,采用Wachspress正六边形数学单元对两个典型热传导问题进行了仿真,计算结果与参考解能较好地吻合,表明多边形NMM可以很好地模拟平面稳态热传导问题.
  • [1] Li B Y, Sun W W. Numerical analysis of heat and moisture transport with a finite difference method[J]. Numerical Methods for Partial Differential Equations,2013,29(1): 226-250.
    [2] Wang B L, Tian Z H. Application of finite element-finite difference method to the determination of transient temperature field in functionally graded materials[J]. Finite Elements in Analysis & Design,2005,41(4): 335-349.
    [3] Aguirre-Ramirez G, Oden J T. Finite element technique applied to heat conduction in solids with temperature dependent thermal conductivity[J]. International Journal for Numerical Methods in Engineering,1973,7(3): 345-355.
    [4] Adam Fic, Ryszard A B, Alain J K. Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method[J]. Numerical Heat Transfer Fundamentals,2005,48(2): 103-124.
    [5] 欧贵宝, 费纪生. 解瞬态热传导问题的边界元法[J]. 核动力工程, 1991,12(4): 76-80.(OU Gui-bao, FEI Ji-sheng. Boundary element method for solving transient heat conduction[J].Nuclear Power Engineering,1991,12(4): 76-80.(in Chinese))
    [6] Onyango T T M, Ingham D B, Lesnic D. Reconstruction of boundary condition laws in heat conduction using the boundary element method[J]. Computer & Mathematics With Applications,2009,57(1): 153-168.
    [7] Cheng C Z, Han Z L, Zhou H L, et al. Analysis of the temperature field in anisotropic coating-structures by the boundary element method[J]. Engineering Analysis With Boundary Elements,2015,60 (1): 115-122.
    [8] Liu Y, Zhang X, Lu M W. Meshless least-squares method for solving the steady-state heat conduction equation[J]. Journal of Tsinghua University Science and Technology,2005,10(1): 61-66.
    [9] Wang H, Qin Q H, Kang Y L. A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media[J].Archive of Applied Mechanics,2005,74(8): 563-579.
    [10] 王冰冰, 高欣, 段庆林. 稳态热传导的二阶一致无网格法[J]. 应用数学和力学, 2013,34(7): 750-755.(WANG Bing-bing, GAO Xin, DUAN Qing-lin. Quadratically consistent meshfree methods for heat conduction in steady state[J]. Applied Mathematics and Mechanics,2013,34(7): 750-755.(in Chinese))
    [11] Merle R, Dolbow J. Solving thermal and phase change problems with the extended finite element method[J]. Computational Mechanics,2002,28(5): 339-350.
    [12] Liu G W, Hu Y, Li Q B, et al. XFEM for thermal crack of massive concrete[J]. Mathematical Problems in Engineering,2013,2013(12): 261-294.
    [13] Liu J T, Gu S T, Monteiro E, et al. A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM[J]. Computational Mechanics,2014,53(4): 825-843.
    [14] Stapor P. The XFEM for nonlinear thermal and phase change problems[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2015,25(2): 400-421.
    [15] Shi G H. Manifold method of material analysis[C]// Transaction of 〖STBX〗9th Army Conference on Applied Mathematics and Computing . 1991: 57-76.
    [16] 魏高峰, 冯伟. 热传导问题的非协调数值流形方法[J]. 力学季刊, 2005,26(3): 451-454.(WEI Gao-feng, FENG Wei. Incompatible numerical manifold method based on heat exchange problem[J]. Chinese Quarterly of Mechanics,2005,26(3): 451-454.(in Chinese))
    [17] 林绍忠, 明峥嵘, 祁勇峰. 用数值流形法分析温度场及温度应力[J]. 长江科学院院报, 2007,24(5): 72-75.(LIN Shao-zhong, MING Zheng-rong, QI Yong-feng. Thermal field and thermal stress analysis based on numerical manifold method[J]. Journal of Yangtze River Scientific Research Institute,2007,24(5): 72-75.(in Chinese))
    [18] 明峥嵘. 数值流形法在大体积混凝土结构温度应力仿真计算中的应用研究[D]. 硕士学位论文. 武汉: 长江科学院, 2007.(MING Zheng-rong. Research on the application of numerical manifold method in thermal stress simulation of mass concrete structures[D]. Master Thesis. Wuhan: The Yangtze River Academy of Sciences, 2007.(in Chinese))
    [19] 刘泉声, 刘学伟. 裂隙岩体温度场数值流形方法初步研究[J]. 岩土工程学报, 2013,35(4): 635-642.(LIU Quan-sheng, LIU Xue-wei. Preliminary research on numerical manifold method for temperature field of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering,2013,35(4): 635-642.(in Chinese))
    [20] 刘学伟, 刘泉声, 黄诗冰, 等. 裂隙岩体温度-渗流耦合数值流形方法[J]. 四川大学学报(工程科学版), 2013,45(2): 77-83.(LIU Xue-wei, LIU Quan-sheng, HUANG Shi-bing, et al. Study on numerical manifold method of coupled thermo-hydraulic of fractured rock masses[J]. Journal of Sichuan University(Engineering Science ), 2013,45(2): 77-83.(in Chinese))
    [21] 刘学伟, 刘泉声, 卢超波, 等. 温度-应力耦合作用下岩体裂隙扩展的数值流形方法研究[J]. 岩石力学与工程学报, 2014 ,33(7): 1432-1441.(LIU Xue-wei, LIU Quan-sheng, LU Chao-bo, et al. A numerical manifold method for fracture propagation of rock mass considering thermo-mechanical coupling[J]. Chinese Journal of Rock Mechanics & Engineering,2014,33(7): 1432-1441.(in Chinese))
    [22] Zhang H H, Ma G W, Ren F. Implementation of the numerical manifold method for thermo-mechanical fracture of planar solids[J]. Engineering Analysis With Boundary Elements,2014,〖STHZ〗 44(1): 45-54.
    [23] 李义. 基于独立覆盖数值流形法的大体积混凝土温度场仿真计算[D]. 硕士学位论文. 武汉: 长江科学院, 2015.(LI Yi. Simulation of mass concrete temperature field based on the numerical manifold method with independent cover[D]. Master Thesis. Wuhan: The Yangtze River Academy of Sciences, 2015.(in Chinese))
    [24] 王兆清. 有理单元法研究[D]. 博士学位论文. 上海: 上海大学, 2004.(WANG Zhao-qing. Study on rational element method[D]. PhD Thesis. Shanghai: Shanghai University,2004.(in Chinese))
    [25] Sukumar N, Tabarraei A. Conforming polygonal finite elements[J]. International Journal for Numerical Methods in Engineering,2004,61(12): 2045-2066.
    [26] Tabarraei A, Sukumar N. Extended finite element method on polygonal and quadtree meshes[J]. Computer Methods in Applied Mechanics & Engineering,2008,197(5): 425-438.
    [27] 张慧华, 严家祥. 基于蜂窝数值流形元的静弹性力学问题求解[J]. 南昌航空大学学报(自然科学版), 2011,25(4): 1-8.(ZHANG Hui-hua, YAN Jia-xiang. Investigation of elastostatic problems by the numerical manifold method on honeycomb elements[J]. Journal of Nanchang Hangkong University (Natural Science Edition),2011,25(4): 1-8.(in Chinese))
    [28] Zhang H H, Zhang S Q. Extract of stress intensity factors on honeycomb elements by the numerical manifold method[J]. Finite Elements in Analysis and Design,2012,59(10): 55-65.
    [29] 张慧华, 祝晶晶. 复杂裂纹问题的多边形数值流形方法研究[J]. 固体力学学报, 2013,34(1): 38-46.(ZHANG Hui-hua, ZHU Jing-jing. Numerical manifold analysis of complex crack problems on polygonal elements[J]. Chinese Journal of Solid Mechanics,2013,34(1): 38-46.(in Chinese))
    [30] Zhang H H, Chen Y L, Li L X, et al. Accuracy comparison of rectangular and triangular mathematical elements in the numerical manifold method[C]// Proceeding of the 〖STBX〗9th International Conference on Analysis of Discontinuous Deformation . 2010: 297-303.
    [31] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.(WANG Xu-cheng. Finite Element Method [M]. Beijing: Tsinghua University Press, 2003.(in Chinese))
    [32] Wachspress E L. A Rational Finite Element Basis [M]. New York: Academic Press, 1975.
    [33] 余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011,28(6): 884-890.(YU Tian-tang, WAN Lin-lin. Extended finite element method for heat transfer problems in heterogeneous material[J]. Chinese Journal of Computational Mechanics,2011,28(6): 884-890.(in Chinese))
    [34] Liu Y, Zhang X, Lu M W. A meshless method based on least-squares approach for steady and unsteady state heat conduction problems[J]. Numerical Heat Transfer Part B: Fundamentals,2007,47(3): 257-275.
    [35] Moaveni S. Finite Element Analysis Theory and Application With ANSYS [M]. 3rd ed. New Jersey: Pearson Prentice Hall, 2007.
  • 加载中
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  154
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回