留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回收函数与函数的无界性

李美术 高英

李美术, 高英. 回收函数与函数的无界性[J]. 应用数学和力学, 2017, 38(10): 1187-1194. doi: 10.21656/1000-0887.370307
引用本文: 李美术, 高英. 回收函数与函数的无界性[J]. 应用数学和力学, 2017, 38(10): 1187-1194. doi: 10.21656/1000-0887.370307
LI Mei-shu, GAO Ying. Recession Functions and Unboundedness of Functions[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1187-1194. doi: 10.21656/1000-0887.370307
Citation: LI Mei-shu, GAO Ying. Recession Functions and Unboundedness of Functions[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1187-1194. doi: 10.21656/1000-0887.370307

回收函数与函数的无界性

doi: 10.21656/1000-0887.370307
基金项目: 国家自然科学基金(11201511;11771064);重庆市科委项目(cstc2015jcyjA00005);重庆市教委项目(KJ1500309)
详细信息
    作者简介:

    李美术(1987—),男,硕士生(E-mail: ly15320323775x@163.com);高英(1982—),女,教授(通讯作者. E-mail: gaoyingimu@163.com).

  • 中图分类号: O174

Recession Functions and Unboundedness of Functions

Funds: The National Natural Science Foundation of China(11201511;11771064)
  • 摘要: 主要利用回收锥和回收函数来研究函数的下无界性。首先, 针对凸函数在非可微条件下,利用中值定理和回收锥刻画了凸函数次微分的性质, 并在此基础上给出了基于次可微条件下回收向量的充要条件。其次,将凸性推广到E-凸, 在一定条件下,利用回收函数研究了E-凸函数的下无界性。最后,通过举例说明这些结果不能推广到拟凸条件.
  • [1] Rockafellar R T. Convex Analysis [M]. Princeton N J: Princeton University Press, 1970.
    [2] 黄学祥. 广义回收锥与广义回收函数[J]. 湘潭大学自然科学学报, 1990(4): 17-22.(HUANG Xue-xiang. Generalized recovery cone and generalized recovery function[J]. Natural Science Journal of Xiangtan University,1990(4): 17-22.(in Chinese))
    [3] 唐莉萍, 李飞, 赵克全, 等. 关于向量优化问题的Δ函数标量化刻画的某些注记[J]. 应用数学和力学, 2015,36(10): 1095-1106.(TANG Li-ping, LI Fei, ZHAO Ke-quan, et al. About the vector optimization problems Δ function standard quantitative characterization of some note[J]. Applied Mathematics and Mechanics,2015,36 (10) : 1095-1106.(in Chinese))
    [4] 赵勇, 彭再云, 张石生. 向量优化问题有效点集的稳定性[J]. 应用数学和力学, 2013,34(6): 643-650.(ZHAO Yong, PENG Zai-yun, ZHANG Shi-sheng. Stability of effective point set for vector optimization[J]. Applied Mathematics and Mechanics,2013,34(6): 643-650.(in Chinese))
    [5] 李小燕, 高英. 多目标优化问题proximal真有效解的最优性条件[J]. 应用数学和力学, 2015,36(6): 668-676.(LI Xiao-yan, GAO Ying. The optimal conditions for the effective solution of the multi-objective optimization problem[J]. Applied Mathematics and Mechanics,2015,36(6): 668-676.(in Chinese))
    [6] Obuchowska W T. On the minimizing trajectory of convex functions with unbounded level sets[J]. Computational Optimization Applications,2003,27(1): 37-52.
    [7] Obuchowska W T, Murty K G. Cone of recession and unboundedness of convex functions[J]. European Journal of Operational Research,2001,133(2): 409-415.
    [8] Luc D T. Recession cones and the domination property in vector optimization[J]. Mathematical Programming,1991,49(1): 113-122.
    [9] Obuchowska W T. Unboundedness in reverse convex and concave integer programming[J]. Mathematical Methods of Operations Research,2010,72(2): 187-204.
    [10] Deng S. Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization[J]. Journal of Optimization Theory Applications,2010,144(1): 29-42.
    [11] CHEN Zhe. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization,2013,55(3): 507-520.
    [12] 宁刚. E-凸函数的若干特征[J]. 运筹学学报, 2007,11(1): 121-126.(NING Gang. A number of characteristics of the E-convex function[J]. Journal of Operational Research,2007,11(1): 121-126.(in Chinese))
    [13] 史树中. 非光滑分析[J]. 数学进展, 1986,15(1): 9-21.(SHI Shu-zhong. Nonsmooth analysis[J]. Mathematical Progress,1986,15(1): 9-21.(in Chinese))
    [14] 杨新民, 戎卫东. 广义凸性及其应用[M]. 北京: 科学出版社, 2016.(YANG Xin-min, RONG Wei-dong. Generalized Convexity and Its Application [M]. Beijing: Science Press, 2016.(in Chinese))
    [15] 应玫茜, 魏权龄. 非线性规划及其理论[M]. 北京: 中国人民大学出版社, 1994.(YING Mei-qian, WEI Quan-ling. The Theory of Nonlinear Programming and Its Theory [M]. Beijing: Chinese People’s University Press, 1994.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1168
  • HTML全文浏览量:  152
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2017-09-12
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回