留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平来流对扰动成长和对流周期性的影响

胡彪 宁利中 宁碧波 田伟利 吴昊 宁景昊

胡彪, 宁利中, 宁碧波, 田伟利, 吴昊, 宁景昊. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017, 38(10): 1103-1111. doi: 10.21656/1000-0887.370314
引用本文: 胡彪, 宁利中, 宁碧波, 田伟利, 吴昊, 宁景昊. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017, 38(10): 1103-1111. doi: 10.21656/1000-0887.370314
HU Biao, NING Li-zhong, NING Bi-bo, TIAN Wei-li, WU Hao, NING Jing-hao. Effects of Horizontal Flow on Perturbation Growth and Convection Periodicity[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1103-1111. doi: 10.21656/1000-0887.370314
Citation: HU Biao, NING Li-zhong, NING Bi-bo, TIAN Wei-li, WU Hao, NING Jing-hao. Effects of Horizontal Flow on Perturbation Growth and Convection Periodicity[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1103-1111. doi: 10.21656/1000-0887.370314

水平来流对扰动成长和对流周期性的影响

doi: 10.21656/1000-0887.370314
基金项目: 国家自然科学基金(10872164);陕西省重点学科建设专项资金资助项目(00X901)
详细信息
    作者简介:

    胡彪(1989—),男,硕士生(E-mail: 848716986@qq.com);宁利中(1961—),男,教授,博士(通讯作者. E-mail: ninglz@xaut.edu.cn).

  • 中图分类号: O357

Effects of Horizontal Flow on Perturbation Growth and Convection Periodicity

Funds: The National Natural Science Foundation of China(10872164)
  • 摘要: 对Pr=0.0272的纯流体在矩形腔体外加水平来流时,进行二维流体力学基本方程组的数值模拟.研究了该纯流体Rayleigh-Benard对流的一维行波斑图的成长及时空的演化.发现对流成长过程可以划分为3个阶段,即对流发展、对流指数成长和周期变化。在对流指数成长阶段对不同相对Rayleigh(瑞利)数Rar的最大垂直流速场随时间变化的情况进行分析,获得了最大垂直流速场指数成长阶段的线性成长率γm和相对Rayleigh数Rar的关系公式.研究了行波周期受水平来流Reynolds(雷诺)数的影响,揭示了行波对流周期性及其对水平来流Reynolds数的依赖性.
  • [1] Chandrasekhar S. Hydromagnetic Stability [M]. Oxford: Oxford University Press, 1961: 1-100.
    [2] Cross M C, Hohenberg P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics, 1993,65(3): 998-1011.
    [3] Assenheimer M, Steinberg V. Transition between spiral and target states in Rayleigh-Bénard convection[J]. Nature,1994,367: 345-347.
    [4] NING Li-zhong, Harada Y, Yahata H, et al. Fully-developed traveling wave convection in binary fluid mixtures with lateral flow[J]. Progress of Theoretical Physics,2001,106(3): 503-512.
    [5] NING Li-zhong, Harada Y, Yahata H, et al. The spatio-temporal structure of binary fluid convection with horizontal flow[J]. Journal of Hydrodynamics,2004,16(2): 151-157.
    [6] Barten W, Lucke M, Kamps M. Localized traveling-wave convection in binary fluid mixtures[J]. Physical Review Letters,1991,66(20): 2621-2624.
    [7] Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures I: extended traveling wave and stationary states[J].Physical Review E,1995,51(6): 5636-5661.
    [8] Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures II: localized traveling waves[J]. Physical Review E,1995,51(6): 5662-5682.
    [9] Jung D, Lücke M. Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong soret effect[J]. Physical Review Letters,2002,89(5): 054502-1-054502-4.
    [10] Batiste O, Knobloch E, Mercader I, et al. Simulations of oscillatory binary fluid convection in large aspect ratio containers[J]. Physical Review E,2001,65(1): 016303.
    [11] Taraut A V, Smorodin B L, Lücke M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055.
    [12] Knobloch E, Mercader I, Batiste O, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505-1-025505-10.
    [13] Mercader I, Batiste O, Alonso A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
    [14] Jung C, Lücke M, Büchel P. Influence of through-flow on linear pattern formation properties in binary mixture convection[J]. Physical Review E,1996,54(2): 1510-1529.
    [15] Buchel P, Lucke M. Influence of through flow on binary fluid convection[J]. Physical Review E,2000,61(4): 3793-3810.
    [16] LI Guo-dong. Traveling-wave patterns in binary mixture convection with through flow[J]. Progress of Theoretical Physics,2001,106(2): 293-313.
    [17] LI Guo-dong, Ogawa A, Harada Y. Nonlinear convective states in a fluid mixture with through flow[J]. Progress of Theoretical Physics,2001,106(6): 1115-1128.
    [18] 李国栋, 黄永念. 有水平流时双流体混合物对流的时空演变[J]. 力学进展, 2004,34(2): 263-269.(LI Guo-dong, HUANG Yong-nian. Spatiotemporal evolution in binary fluid mixture convection with through-flow[J]. Advances in Mechanics,2004,34(2): 263-269.(in Chinese))
    [19] 赵秉新. 水平流作用下的混合流体行进波对流[J]. 水动力学研究与进展, 2012,27(3): 264-274.(ZHAO Bing-xin. Traveling wave convection in binary fluid mixtures with lateral flow[J]. Chinese Journal of Hydrodynamics,2012,27(3): 264-274.(in Chinese))
    [20] 宁利中, 周洋, 王思怡, 等. Poiseuille-Rayleigh-Benard流动中的局部行波对流[J]. 水动力学研究与进展, 2010,25(3): 299-306.(NING Li-zhong, ZHOU Yang, WANG Si-yi, et al. Localized traveling wave convection in Poiseuille-Rayleigh-Benard flows[J]. Chinese Journal of Hydrodynamics,2010,25(3): 299-306.(in Chinese))
    [21] NING Li-zhong, QI Xin, Harada Y, et al. A periodically localized traveling wave state of binary fluid convection with horizontal flows[J]. Journal of Hydrodynamics(Ser B),2006,18(2): 199-205.
  • 加载中
计量
  • 文章访问数:  955
  • HTML全文浏览量:  144
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-17
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回