留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳帆塔轨道和姿态耦合动力学建模及辛求解

文奋强 邓子辰 魏乙 李庆军

文奋强, 邓子辰, 魏乙, 李庆军. 太阳帆塔轨道和姿态耦合动力学建模及辛求解[J]. 应用数学和力学, 2017, 38(7): 762-768. doi: 10.21656/1000-0887.370321
引用本文: 文奋强, 邓子辰, 魏乙, 李庆军. 太阳帆塔轨道和姿态耦合动力学建模及辛求解[J]. 应用数学和力学, 2017, 38(7): 762-768. doi: 10.21656/1000-0887.370321
WEN Fen-qiang, DENG Zi-chen, WEI Yi, LI Qing-jun. Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers[J]. Applied Mathematics and Mechanics, 2017, 38(7): 762-768. doi: 10.21656/1000-0887.370321
Citation: WEN Fen-qiang, DENG Zi-chen, WEI Yi, LI Qing-jun. Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers[J]. Applied Mathematics and Mechanics, 2017, 38(7): 762-768. doi: 10.21656/1000-0887.370321

太阳帆塔轨道和姿态耦合动力学建模及辛求解

doi: 10.21656/1000-0887.370321
基金项目: 国家自然科学基金(11432010;11572254)
详细信息
    作者简介:

    文奋强(1993—),男,硕士生(E-mail: fqwen@outlook.com);邓子辰(1964—),男,教授,博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: V412.4

Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers

Funds: The National Natural Science Foundation of China(11432010; 11572254)
  • 摘要: 在建立太阳帆塔太阳能电站简化模型的基础上,将系统的动力学方程从Lagrange体系导入到了Hamilton体系,给出了带约束的Hamilton正则方程;进而采用祖冲之类算法和辛Runge-Kutta方法分析了太阳帆塔轨道和姿态耦合系统的动力学特性,并讨论了算法的保能量、保约束特性;最后,数值模拟了系统的动力学特性,说明了所提方法的有效性.
  • [1] 杨阳, 张逸群, 王东旭, 等. SSPS太阳能收集系统研究现状及发展趋势[J]. 宇航学报, 2016,37(1): 21-28.(YANG Yang, ZHAGN Yi-qun, WANG Dong-xu, et al. Status and trend of the solar energy collection system for space solar power station[J]. Journal of Astronautics,2016,37(1): 21-28.(in Chinese))
    [2] 侯欣宾, 王力, 朱耀平, 等. 国际空间太阳能电站发展现状[J]. 太阳能学报,2009,30(10): 1263-1268.(HOU Xin-bin, WANG Li, ZHU Yao-ping, et al. Summary of the international space solar power systems[J]. Acta Energiae Solaris Sinica,2009,30(10): 1263-1268.(in Chinese))
    [3] 王立, 侯欣宾. 空间太阳能电站的关键技术及发展建议[J]. 航天器环境工程, 2014,31(4): 343-350.(WANG Li, HOU Xin-bin. Key technologies and some suggestions for the development of space solar power station[J]. Spacecraft Environment Engineering,2014,31(4): 343-350.(in Chinese))
    [4] 吴永, 杜思义, 胡继云, 等. 约束多体系统动力学方程的辛算法[J]. 重庆大学学报, 2004,27(6): 102-105.(WU Yong, DU Si-yi, HU Ji-yun, et al. Symplectic methods of the dynamic equations of constrained multibody systems[J]. Journal of Chongqing University,2004,27(6): 102-105.(in Chinese))
    [5] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
    [6] Hairer E, Wanner G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential-Algebraic Problems [M]. 2nd ed. Berlin: Springer, 1996.
    [7] 钟万勰, 高强, 彭海军. 经典力学——辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun. Classical Mechanics—Its Symplectic Description [M]. Dalian: Dalian University of Technology Press, 2013.(in Chinese))
    [8] 钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J]. Journal of Dynamics and Control,2006,4(3):193-200.(in Chinese))
    [9] 吴锋, 高强, 钟万勰. 基于祖冲之类方法的多体动力学方程保能量保约束积分[J]. 计算机辅助工程, 2014,23(1): 64-68, 75.(WU Feng, GAO Qiang, ZHONG Wan-xie. Energy and constraint preservation integration for multibody equations based on ZU Chong-zhi method[J]. Computer Aided Engineering,2014,23(1): 64-68, 75.(in Chinese))
    [10] 吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 1-13.(WU Feng, ZHONG Wan-xie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 1-13.(in Chinese))
    [11] WEI Yi, DENG Zi-chen, WANG Yan, et al. An improved energy and constraint conserving algorithm for constrained Hamiltonian systems[J]. Journal of Computational and Theoretical Nanoscience,2016,13(1): 1055-1062.
    [12] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科技出版社, 2003: 185-205.(FENG Kang, QIN Meng-zhao. Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Hangzhou: Zhejiang Science and Technology Press, 2003: 185-205.(in Chinese))
    [13] FENG Kang, QIN Meng-zhao. Hamiltonian algorithms for Hamiltonian dynamical systems[J]. Progress in Natural Science,1991,1(2): 105-116.
    [14] 李庆军, 叶学华, 王博, 等. 辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究[J]. 应用数学和力学, 2014,35(12): 1299-1307.(LI Qing-jun, YE Xue-hua, WANG Bo, et al. Nonlinear dynamic behavior of the satellite rendezvous and docking based on the symplectic Runge-Kutta method[J]. Applied Mathematics and Mechanics,2014,35(12): 1299-1307.(in Chinese))
    [15] 王新栋, 胡伟鹏, 邓子辰. 空间太阳能电站太阳能接收器二维展开过程的保结构分析[J]. 动力学与控制学报, 2015,13(6): 406-409.(WANG Xin-dong, HU Wei-peng, DENG Zi-chen. Structure-preserving analysis of 2D deploying process for solar power receiver of solar power satellite[J]. Journal of Dynamics and Control,2015,13(6): 406-409.(in Chinese))
    [16] 魏乙, 邓子辰, 李庆军, 等. 绳系空间太阳能电站动力学响应分析[J]. 宇航学报, 2016,37(9): 1041-1048.(WEI Yi, DENG Zi-chen, LI Qing-jun, et al. Analysis of dynamic response of tethered space solar power station[J]. Journal of Astronautics,2016,37(9): 1041-1048.(in Chinese))
  • 加载中
计量
  • 文章访问数:  949
  • HTML全文浏览量:  80
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-03
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回