留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脑内各向异性扩散传质与吸附反应过程数值分析

李宏顺 施柱 曾绍群

李宏顺, 施柱, 曾绍群. 脑内各向异性扩散传质与吸附反应过程数值分析[J]. 应用数学和力学, 2017, 38(10): 1112-1119. doi: 10.21656/1000-0887.370322
引用本文: 李宏顺, 施柱, 曾绍群. 脑内各向异性扩散传质与吸附反应过程数值分析[J]. 应用数学和力学, 2017, 38(10): 1112-1119. doi: 10.21656/1000-0887.370322
LI Hong-shun, SHI Zhu, ZENG Shao-qun. Numerical Analysis of Anisotropic Mass Diffusion, Adsorption and Chemical Reaction Processes in Brain Tissues[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1112-1119. doi: 10.21656/1000-0887.370322
Citation: LI Hong-shun, SHI Zhu, ZENG Shao-qun. Numerical Analysis of Anisotropic Mass Diffusion, Adsorption and Chemical Reaction Processes in Brain Tissues[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1112-1119. doi: 10.21656/1000-0887.370322

脑内各向异性扩散传质与吸附反应过程数值分析

doi: 10.21656/1000-0887.370322
基金项目: 国家自然科学基金重大科研仪器设备研制专项(81327802)
详细信息
    作者简介:

    李宏顺(1965—),男,教授,博士(通讯作者. E-mail: lihs_wit@aliyun.com).

  • 中图分类号: R318;O242.1;TQ021.4

Numerical Analysis of Anisotropic Mass Diffusion, Adsorption and Chemical Reaction Processes in Brain Tissues

Funds: The National Natural Science Foundation for the Development of Major Research Equipment and Instrument(81327802)
  • 摘要: 对脑组织内传质过程的机理及其影响因素进行了分析,建立了综合考虑脑内物质各向异性扩散、吸附和反应过程的数学模型,模型方程采用隐式控制容积法进行数值求解.计算结果表明:组织迂曲度越大,物质的扩散越慢,当某一方向迂曲度较小时,物质浓度明显增大,物质扩散变快,由于脑组织的非均质性,脑内物质的扩散传递存在着竞争现象;吸附与反应作用会抑制脑内物质传递,吸附速率越大,抑制现象越明显,对于脑内非线性的米氏反应过程,当反应速率常数增大时,稳定浓度会显著减小,同时米氏常数的增大则会使得稳定浓度值增大.相较于吸附过程,米氏过程的抑制性作用更为明显.
  • [1] Sykova E, Nicholson C. Diffusion in brain extracellular space[J]. Physiological Reviews,2008,88(4): 1277-1340.
    [2] Nicholson C. Diffusion and related transport mechanisms in brain tissue[J]. Reports on Progress in Physics,2001,64(7): 815-884.
    [3] 韩鸿宾. 神经元学说的补丁——脑细胞生存的微环境[J]. 科技导报, 2012,30(26): 71-74. (HAN Hong-bin. Micro-environment of neurons: a neglected issue[J]. Science & Technology Review,2012,30(26): 71-74.(in Chinese))
    [4] Kume-Kick J, Mazel T, Voríek I, et al. Independence of extracellular tortuosity and volume fraction during osmotic challenge in rat cortex[J]. Journal of Physiology,2002,542(2): 515-527.
    [5] Cragg S J, Nicholson C, Kume-Kick J, et al. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake[J]. Journal of Neurophysiology,2001,85(4): 1761-1771.
    [6] Nicholson C. Factors governing diffusing molecular signals in brain extracellular space[J]. Journal of Neural Transmission,2005,112(1): 29-44.
    [7] Patlak C S, Hospod F E, Trowbridge S D, et al. Diffusion of radiotracers in normal and ischemic brain slices[J].Journal of Cerebral Blood Flow & Metabolism,1998,18(7): 776-802.
    [8] Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamine after iontophoresis in striatum[J].Biophysical Journal,1995,68(5): 1699-1715.
    [9] Nicholson C. Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity[J]. Brain Research,1985,333(2): 325-329.
    [10] Tao A, Tao L, Nicholson C. Cell cavities increase tortuosity in brain extracellular space[J]. Journal of Theoretical Biology,2005,234(4): 525-536.
    [11] 田牛, 赵秀梅. 组织通道对医学、生物学发展的重要作用[J]. 微循环学杂志, 2006,16(3): 1-3. (TIAN Niu, ZHAO Xiu-mei. Tissue channel carry out important values in development of medical and biology[J]. Chinese Journal of Microcirculation,2006,16(3): 1-3.(in Chinese))
    [12] 王国卿, 封丽芳, 夏作理. 脑内物质的淋巴引流与脑细胞微环境[J]. 中国微循环, 2005,9(3): 215-218.(WANG Guo-qing, FENG Li-fang, XIA Zuo-li. Lymphatic draining of brain mass and microenvironment of brain cells[J]. Journal of Chinese Microcirculation,2005,9(3): 215-218.(in Chinese))
    [13] 李玉珍, 田牛. 24位专家对临床微循环目前存在问题和改进意见的汇总[J]. 中国微循环, 2005,9(2): 71-75.(LI Yu-zhen, TIAN Niu. Summary of suggestions of 24 experts on existing problems and improvement in clinical microcirculation[J]. Journal of Chinese Microcirculation,2005,9(2): 71-75.(in Chinese))
    [14] SHI Chun-yan, LEI Yi-ming, HAN Hong-bin, et al. Transportation in the interstitial space of the brain can be regulated by neuronal excitation[J]. Scientific Reports,2015,5(3): 17673.
    [15] Neculae A P, Dan C. Numerical analysis of the diffusive mass transport in brain tissues with applications to optical sensors[C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series . 2013: 343-348.
    [16] 刘莹, 章德发, 毕勇强, 等. 主动脉弓及分支血管内非稳态血流分析[J]. 应用数学和力学, 2015,36(4): 432-439.(LIU Ying, ZHANG De-fa, BI Yong-qiang, et al. Analysis of unsteady blood flow in the human aortic bifurcation[J]. Applied Mathematics and Mechanics,2015,36(4): 432-439.(in Chinese))
    [17] 胡晓虎, 唐三一. 血管外给药的非线性房室模型解的逼近[J]. 应用数学和力学, 2014,35(9): 1033-1045.(HU Xiao-hu, TANG San-yi. Approximate solutions to the nonlinear compartmental model for extravascular administration[J]. Applied Mathematics and Mechanics,2014,35(9): 1033-1045.(in Chinese))
    [18] El-Kareh A W, Braunstein S L, Secomb T W. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue[J]. Biophysical Journal,1993,64(5): 1638-1646.
    [19] 陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001: 28-61. (TAO Wen-quan.Numerical Heat Transfer [M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001: 28-61.(in Chinese))
    [20] 陶文铨. 计算传热学的近代进展[M]. 北京: 科学出版社, 2000: 19-97, 105-131, 267-277.(TAO Wen-quan. Advances in Computational Heat Transfer [M]. Beijing: Science Press, 2000: 19-97, 105-131, 267-277.(in Chinese))
  • 加载中
计量
  • 文章访问数:  996
  • HTML全文浏览量:  149
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2016-12-07
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回