留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类含有分数阶导数的二自由度耦合系统

葛志新 陈咸奖 陈松林

葛志新, 陈咸奖, 陈松林. 一类含有分数阶导数的二自由度耦合系统[J]. 应用数学和力学, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333
引用本文: 葛志新, 陈咸奖, 陈松林. 一类含有分数阶导数的二自由度耦合系统[J]. 应用数学和力学, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333
GE Zhi-xin, CHEN Xian-jiang, CHEN Song-lin. A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333
Citation: GE Zhi-xin, CHEN Xian-jiang, CHEN Song-lin. A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333

一类含有分数阶导数的二自由度耦合系统

doi: 10.21656/1000-0887.370333
基金项目: 安徽省高校自然科学研究重点项目(KJ2016A084)
详细信息
    作者简介:

    葛志新(1970—),女,硕士(E-mail: gezhixin@ahut.edu.cn);陈咸奖(1970—),男,硕士(通讯作者. E-mail: chenxianjiang@sina.com);陈松林(1964—),男,硕士(E-mail: slchen@ahut.edu.cn).

  • 中图分类号: O175.14

A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives

  • 摘要: 研究了一类含有小扰动具有分数阶导数的二自由度耦合振子的振动问题.首先对含有由RiemannLiouville定义的分数阶导数的振动方程组构造渐近解,利用多重尺度法,得到振动问题的可解性条件.然后在可解性条件下,得到分数阶指数、系数及小参数对振动的影响,并求得渐近解.最后研究了该解的稳定性,发现定常解都是稳定的
  • [1] 胡海岩. 机械振动基础[M]. 北京: 北京航空航天大学出版社, 2005.(HU Hai-yan. Fundamentals of Mechanical Vibration [M]. Beijing: Beihang University Press, 2005.(in Chinese))
    [2] Nayfeh A H. Introduction to Perturbation Techniques [M]. Shanghai: Shanghai Translation Publishing House, 1990.〖JP〗
    [3] 刘灿昌, 岳书常, 许英姿, 等. 参数激励非线性振动时滞反馈最优化控制[J]. 振动与冲击, 2015,34(20): 6-9.(LIU Can-chang, YUE Shu-chang, XU Ying-zi, et al. Optimal control of parametric excitated nonlinear vibration system with delayed linear and nonlinear feedback controllers[J]. Journal of Vibration and Shock,2015,34(20): 6-9.(in Chinese))
    [4] 鲍四元, 邓子辰. 分数阶振子方程基于变分迭代的近似解析解序列[J]. 应用数学和力学, 2015,36(1): 48-60.(BAO Si-yuan, DENG Zi-chen. The approximate analytical solution sequence for fractional oscillation equations based on the fractional variational iteration method[J]. Applied Mathematics and Mechanics,2015,36(1): 48-60.(in Chinese))
    [5] 张晓棣, 陈文. 三种分形和分数阶导数阻尼振动模型的比较研究[J]. 固体力学学报, 2009,30(5): 496-503.(ZHANG Xiao-di, CHEN Wen. Comparison of three fractal and fractional derivative damped oscillation models[J]. Chinese Journal of Solid Mechanics,2009,30(5): 496-503.(in Chinese))
    [6] HU Shuai, CHEN Wen, GOU Xiao-fan. Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter[J]. Advances in Vibration Engineering,2011,10(3): 187-196.
    [7] CAI Wei, CHEN Wen, ZHANG Xiao-di. A Matlab toolbox for positive fractional time derivative modeling of arbitrarily frequency-dependent viscosity[J]. Journal of Vibration and Control,2014,20(7): 1009-1016.
    [8] Leung A Y T, Gou Z J, Yang H X. Transition curves and bifurcations of a class of fractional Mathieu-type equations [J]. International Journal of Bifurcation and Chaos,2012,22(11): 1250275.
    [9] Mesbahi A, Haeri M, Nazari M, et al. Fractional delayed damped Mathieu equation[J]. International Journal of Control,2015,88(3): 622-630.
    [10] 陈林聪, 李海锋, 李钟慎, 等. 宽带噪声激励下含分数阶导数的Duffing-van del Pol振子的稳态响应[J]. 中国科学: 物理学 力学 天文学, 2013,43(5): 670-677.(CHEN Lin-cong, LI Hai-feng, LI Zhong-shen, et al. Stationary response of Duffing-van del Pol oscillator with fractional derivative under wide-band noise excitations[J]. Science China: Physics, Mechanics & Astronomy, 2013,43(5): 670-677.(in Chinese))
    [11] 杨建华, 刘厚广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究[J]. 物理学报, 2013,62(18): 180503.(YANG Jian-hua, LIU Hou-guang, CHENG Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator[J]. Acta Physica Sinica,2013,62(18): 180503.(in Chinese))
    [12] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振[J]. 物理学报, 2014,63(1): 010506.(ZHANG Lu, XIE Tian-ting, LUO Meng-kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals[J]. Acta Physica Sinica,2014,63(1): 010506.(in Chinese))
    [13] 韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014,63(1): 010503.(WEI Peng, SHEN Yong-jun, YANG Shao-pu. Super-harmonic resonance of fractional-order van der Pol oscillator[J]. Acta Physica Sinica,2014,63(1): 010503.(in Chinese))
    [14] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012,61(11): 110505.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J]. Acta Physica Sinica,2012,61(11): 110505.(in Chinese))
    [15] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ)[J]. 物理学报, 2012,61(15): 150503.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative(Ⅱ)[J]. Acta Physica Sinica,2012,61(15): 150503.(in Chinese))
    [16] 葛志新, 陈咸奖. 一类含有两参数的小迟滞方程的渐近解[J]. 应用数学学报, 2014,37(3): 407-413.(GE Zhi-xin, CHEN Xian-jiang. The asymptotic solution of a class of small delay equations with two parameters[J]. Acta Mathematicae Applicatae Sinica,2014,37(3): 407-413.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1269
  • HTML全文浏览量:  148
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2017-09-14
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回