留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小波神经网络模型预测二氧化碳+水溶液体系界面张力

江安 刘平礼 李年银 张云飞 杜新伟

江安, 刘平礼, 李年银, 张云飞, 杜新伟. 小波神经网络模型预测二氧化碳+水溶液体系界面张力[J]. 应用数学和力学, 2017, 38(10): 1136-1145. doi: 10.21656/1000-0887.370339
引用本文: 江安, 刘平礼, 李年银, 张云飞, 杜新伟. 小波神经网络模型预测二氧化碳+水溶液体系界面张力[J]. 应用数学和力学, 2017, 38(10): 1136-1145. doi: 10.21656/1000-0887.370339
JIANG An, LIU Ping-li, LI Nian-yin, ZHANG Yun-fei, DU Xin-wei. Prediction of Interfacial Tension Between CO2 and Brine With the Wavelet Neural Network Method[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1136-1145. doi: 10.21656/1000-0887.370339
Citation: JIANG An, LIU Ping-li, LI Nian-yin, ZHANG Yun-fei, DU Xin-wei. Prediction of Interfacial Tension Between CO2 and Brine With the Wavelet Neural Network Method[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1136-1145. doi: 10.21656/1000-0887.370339

小波神经网络模型预测二氧化碳+水溶液体系界面张力

doi: 10.21656/1000-0887.370339
基金项目: 国家自然科学基金(面上项目)(51574197)
详细信息
    作者简介:

    江安(1981—),男,工程师(通讯作者. E-mail: 1787182084@qq.com).

  • 中图分类号: TE311

Prediction of Interfacial Tension Between CO2 and Brine With the Wavelet Neural Network Method

Funds: The National Natural Science Foundation of China(General Program)(51574197)
  • 摘要: 二氧化碳+水溶液体系界面张力(IFT)是影响地层中气水两相运移特性的重要参数之一,对二氧化碳捕集、埋存至关重要.为了快速准确地确定二氧化碳+水溶液体系IFT,对已有IFT实验结果进行了统计整理,得到了1 677组样本数据,考虑了压力,温度,气体中甲烷、氮气含量,水溶液中一价阳离子(Na+,K+)浓度、二价阳离子(Ca2+,Mg2+)浓度6个因素对IFT的影响,建立了小波神经网络(WNN)预测模型对二氧化碳+水溶液体系IFT进行预测.模拟结果表明,随机选取839组数据作为训练集样本,得到的小波神经网络结构为6-16-1,该模型预测IFT的平均绝对误差(MMAE)、平均相对误差(MMARE)、方差(MMSE)和相关度(R2)分别为1.23 mN/m,3.30%,2.30 mN2/m2,0.988.与最新提出的多元拟合模型和BP神经网络模型对比结果表明,小波神经网络模型预测精度最高.
  • [1] ZHANG Ji-yuan, FENG Qi-hong, WANG Shu-hua, et al. Estimation of CO2-brine interfacial tension using an artificial neural network[J]. The Journal of Supercritical Fluids,2016,107(1): 31-37.
    [2] 余迎松. 液气界面张力垂直分量引起的基底弹性变形[J]. 应用数学和力学, 2012,33(9): 1025-1042.(YU Yin-song. Substrate elastic deformation due to vertical component of liquid-vapor interfacial tension[J]. Applied Mathematics and Mechanics,2012,33(9): 1025-1042.(in Chinese))
    [3] Hebach A, Oberhof A, Dahmen N, et al. Interfacial tension at elevated pressures—measurements and correlations in the water+carbon dioxide system[J]. Journal of Chemical & Engineering Data,2002,47(6): 1540-1546.
    [4] Chalbaud C, Robin M, Lombard J-M, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources,2009,32(1): 98-109.
    [5] Aggelopoulos C A, Robin M, Vizika O. Interfacial tension between CO2 and brine (NaCl+CaCl2) at elevated pressures and temperatures: the additive effect of different salts[J]. Advances in Water Resources,2011,34(4): 505-511.
    [6] Massoudi R, King Jr A D. Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25°[J]. The Journal of Physical Chemistry,1974,78(22): 2262-2266.
    [7] Chun B S, Wilkinson G T. Interfacial tension in high-pressure carbon dioxide mixtures[J]. Industrial & Engineering Chemistry Research,1995,34(12): 4371-4377.
    [8] Wesch A, Dahmen N, Ebert K, et al. Grenzflchenspannungen, tropfengren und kontaktwinkel im zweiphasensystem H2O/CO2 bei temperaturen von 298 bis 333 K und drücken bis 30 MPa[J]. Chemie Ingenieur Technik,1997,69(7): 942-946.
    [9] Bennion D B, Bachu S. Correlations for the interfacial tension between supercritical phase CO2 and equilibrium brines at in situ conditions[C]// SPE Annual Technical Conference and Exhibition.Colorado, USA, 2008: 1-13.
    [10] Georgiadis A, Maitland G, Trusler J P M, et al. Interfacial tension measurements of the (H2O+CO2) system at elevated pressures and temperatures[J]. Journal of Chemical & Engineering Data,2010,55(10): 4168-4175.
    [11] LI Xue-song, Boek E, Maitland G C, et al. Interfacial tension of (brines+CO2): (0.864 NaCl+0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) mol·kg-1[J]. Journal of Chemical & Engineering Data,2012,57(4): 1078-1088.
    [12] LI Zhao-min, WANG Shu-hua, LI Song-yan, et al. Accurate determination of the CO2-brine interfacial tension using graphical alternating conditional expectation[J]. Energy & Fuels,2013,28(1): 624-635.
    [13] 任双双, 杨胜来, 沈飞. BP神经网络预测最小混相压力[J]. 断块油气田, 2010,17(2): 216-218.(REN Shuang-shuang, YANG Sheng-lai, SHEN Fei. Prediction minimum miscibility pressure with BP neural network[J]. Fault-Block Oil & Gas Field,2010,17(2): 216-218.(in Chinese))
    [14] 韩晋, 杨岳, 陈峰, 等. 基于非等时距加权灰色模型与神经网络的组合预测算法[J]. 应用数学和力学, 2013,34(4): 408-419.(HAN Jin, YANG Yue, CHEN Feng, et al. Combination forecasting algorithm based on non-equal interval weighted grey model and neural network[J]. Applied Mathematics and Mechanics,2013,34(4): 408-419.(in Chinese))
    [15] 盛仲飙, 同晓荣. BP神经网络在曲线拟合中的应用[J]. 科学技术与工程, 2011,11(28): 6998-7000.(SHENG Zhong-biao, TONG Xiao-rong. The application of BP neutral network in curve fitting[J].Science Technology and Engineering,2011,11(28): 6998-7000.(in Chinese))
    [16] 黄海萍. 基于BP神经网络的中国电力需求预测[J]. 科学技术与工程, 2007,7(4): 612-616.(HUANG Hai-ping. Combination estimate for electric demand of China[J]. Science Technology and Engineering,2007,7(4): 612-616.(in Chinese))
    [17] 曹成涛, 崔凤, 林晓辉. 基于神经网络的交通状态模糊判别方法[J]. 科学技术与工程, 2010,10(21): 5195-5199.(CAO Cheng-tao, CUI Feng, LIN Xiao-hui. Traffic condition fuzzy recognition based on neural network[J]. Science Technology and Engineering,2010,10(21): 5195-5199.(in Chinese))
    [18] REN Quan-yuan, CHEN Guang-jin, YAN Wei, et al. Interfacial tension of (CO2+CH4)+water from 298 K to 373 K and pressures up to 30 MPa[J].Journal of Chemical & Engineering Data,2000,45(4): 610-612.
    [19] YAN Wei, ZHAO Guo-ying, CHEN Guang-jin, et al. Interfacial tension of (methane+nitrogen)+water and (carbon dioxide+nitrogen)+water systems[J]. Journal of Chemical &Engineering Data,2001,46(6): 1544-1548.
    [20] Hebach A, Oberhof A, Dahmen N, et al. Interfacial tension at elevated pressures measurements and correlations in the water+carbon dioxide system[J]. Journal of Chemical & Engineering Data,2002,47(6): 1540-1546.
    [21] Chiquet P, Daridon J L, Broseta D, et al. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage[J]. Energy Conversion and Management,2007,48(3): 736-744.
    [22] Bachu S, Bennion D B. Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) ℃, and water salinity from (0 to 334 000) mg·L-1[J]. Journal of Chemical & Engineering Data,2008,54(3): 765-775.
    [23] Bachu S, Bennion D B. Dependence of CO2-brine interfacial tension on aquifer pressure, temperature and water salinity[J]. Energy Procedia,2009,1(1): 3157-3164.
    [24] Chalbaud C A, Robin M, Egermann P. Interfacial tension data and correlations of brine-CO2 systems under reservoir conditions[C]// SPE Annual Technical Conference and Exhibition.Texas, USA, 2006: 1-18.
    [25] Aggelopoulos C A, Robin M, Perfetti E, et al. CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension[J]. Advances in Water Resources,2010,33(6): 691-697.
    [26] Bikkina P K, Shoham O, Uppaluri R. Equilibrated interfacial tension data of the CO2-water system at high pressures and moderate temperatures[J]. Journal of Chemical & Engineering Data,2011,56(10): 3725-3733.
    [27] LI Xue-song, Boek E S, Maitland G C, et al. Interfacial tension of (brines+CO2): CaCl2(aq), MgCl2(aq), and Na4SO2(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg-1[J].Journal of Chemical & Engineering Data,2012,57(5): 1369-1375.
    [28] Kvamme B, Kuznetsova T, Hebach A, et al. Measurements and modelling of interfacial tension for water+carbon dioxide systems at elevated pressures[J]. Computational Materials Science,2007,38(3): 506-513.
    [29] LIU Hui, TIAN Hong-qi, LI Yan-feng, et al. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions[J].Energy Conversion and Management,2015,92(1): 67-81.
    [30] 叶峰. 运用MATLAB软件进行回归分析建模[J]. 成都航空职业技术学院学报, 2007,23(2): 44-47.(YE Feng. Multiple regression modeling by using MATLAB software[J]. Journal of Chengdu Aeronautic Vocational and Technical College,2007,23(2): 44-47.(in Chinese))
    [31] 周荣义, 李树清, 牛会永. 小波神经网络在矿井安全管理评价中的应用[J]. 煤炭科学技术, 2006,34(5): 67-70.(ZHOU Rong-yi, LI Shu-qing, NIU Hui-yong. Application of wavelet neural network in mine safety management assessment[J]. Coal Science and Technology,2006,34(5): 67-70.(in Chinese))
    [32] Jung S, Kwon S D. Weighted error functions in artificial neural networks for improved wind energy potential estimation[J]. Applied Energy,2013,111: 778-790.
  • 加载中
计量
  • 文章访问数:  986
  • HTML全文浏览量:  170
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 修回日期:  2016-12-20
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回