留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于映射函数的三阶WENO改进格式及其应用

徐维铮 孔祥韶 吴卫国

徐维铮, 孔祥韶, 吴卫国. 基于映射函数的三阶WENO改进格式及其应用[J]. 应用数学和力学, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345
引用本文: 徐维铮, 孔祥韶, 吴卫国. 基于映射函数的三阶WENO改进格式及其应用[J]. 应用数学和力学, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345
XU Wei-zheng, KONG Xiang-shao, WU Wei-guo. An Improved rd-Order WENO Scheme Based on Mapping Functions and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345
Citation: XU Wei-zheng, KONG Xiang-shao, WU Wei-guo. An Improved rd-Order WENO Scheme Based on Mapping Functions and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345

基于映射函数的三阶WENO改进格式及其应用

doi: 10.21656/1000-0887.370345
基金项目: 国防基础研究项目(B1420133057);国家自然科学基金(51409202);中央高校基本科研业务费(2016-YB-016)
详细信息
    作者简介:

    徐维铮(1991—) ,男,博士生(E-mail: xuweizheng@whut.edu.cn);孔祥韶(1983—) ,男,副教授,硕士生导师(通讯作者. E-mail: kongxs@whut.edu.cn).

  • 中图分类号: O346.1

An Improved rd-Order WENO Scheme Based on Mapping Functions and Its Application

Funds: The National Natural Science Foundation of China(51409202)
  • 摘要: 低耗散、高分辨率激波捕捉格式对含激波流场的数值模拟具有重要意义.在传统三阶WENO格式(WENO-JS3)和三阶WENOZ格式(WENO-Z3)基础上,基于映射函数,给出WENO-M3、WENOMZ3格式.选用Sod激波管、激波与熵波相互作用、双爆轰波碰撞及双Mach(马赫)反射等经典算例,考察上述格式的计算性能.数值结果表明,WENO-MZ3格式相较其他格式具有耗散低、对流场结构分辨率高的特性.为了进一步扩展WENO-MZ3格式的应用范围,采用该格式数值研究封闭方形舱室内柱形高压、高密度气体爆炸波传播过程,波系演化规律以及壁面典型测点压力载荷.数值计算结果表明WENO-MZ3格式能够较好地模拟包含高压比、高密度比的爆炸波且给出数值耗散较小的壁面压力载荷.
  • [1] LIU Xu-dong, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
    [2] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics,1987,71(2): 231-303.
    [3] JIANG Guang-shan, SHU Chi-wang. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
    [4] Henrick A K, Aslam T D, Powers J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics,2005,207(2): 542-567.
    [5] FENG Hui, HU Fu-xing, WANG Rong. A new mapped weighted essentially non-oscillatory scheme[J]. Journal of Scientific Computing,2012,51(2): 449-473.
    [6] FENG Hui, HUANG Cong, WANG Rong. An improved mapped weighted essentially non-oscillatory scheme[J]. Applied Mathematics & Computation,2014,232(6): 453-468.
    [7] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics,2008,227(6): 3191-3211.
    [8] Acker F, Borges R B D R, Costa B. An improved WENO-Z scheme[J]. Journal of Computational Physics,2016,313: 726-753.
    [9] Zhao S, Lardjane N, Fedioun I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J]. Computers & Fluids,2014,95(3): 74-87.
    [10] Yamaleev N K, Carpenter M H. Third-order energy stable WENO scheme[J]. Journal of Computational Physics,2009,228(8): 3025-3047.
    [11] WU Xiao-shuai, LIANG Jian-han, ZHAO Yu-xin. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids,2016,81: 451-459.
    [12] WU Xiao-shuai, ZHAO Yu-xin. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids,2015,78(3): 162-187.
    [13] Don W S, Borges R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J]. Journal of Computational Physics,2013,250(4): 347-372.
    [14] SHU Chi-wang, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics,1988,77(2): 439-471.
    [15] Rusanov V V. Calculation of interaction of non-steady shock waves with obstacles[J].Ussr Computational Mathematics & Mathematical Physics,1962.
    [16] Sod G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics,1978,27(1): 1-31.
    [17] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
    [18] SHI Jing, ZHANG Yong-tao, SHU Chi-wang. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics,2003,186(2): 690-696.
    [19] Quirk J J, Karni S. On the dynamics of a shock-bubble interaction[J]. Journal of Fluid Mechanics,1996,318(2): 129-163.
  • 加载中
计量
  • 文章访问数:  1338
  • HTML全文浏览量:  256
  • PDF下载量:  930
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2016-12-26
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回