留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含参无导数有记忆迭代方法与其动力系统的构造

王婷 唐烁

王婷, 唐烁. 含参无导数有记忆迭代方法与其动力系统的构造[J]. 应用数学和力学, 2017, 38(12): 1342-1358. doi: 10.21656/1000-0887.370350
引用本文: 王婷, 唐烁. 含参无导数有记忆迭代方法与其动力系统的构造[J]. 应用数学和力学, 2017, 38(12): 1342-1358. doi: 10.21656/1000-0887.370350
WANG Ting, TANG Shuo. Construction of a Parametric Derivative-Free Iterative Method With Memory for Dynamic System Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1342-1358. doi: 10.21656/1000-0887.370350
Citation: WANG Ting, TANG Shuo. Construction of a Parametric Derivative-Free Iterative Method With Memory for Dynamic System Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1342-1358. doi: 10.21656/1000-0887.370350

含参无导数有记忆迭代方法与其动力系统的构造

doi: 10.21656/1000-0887.370350
基金项目: 国家自然科学基金(61272024)
详细信息
    作者简介:

    王婷(1991—),女,硕士(通讯作者. E-mail: 503669777@qq.com);唐烁(1964—),男,教授,硕士生导师.

  • 中图分类号: O241.7

Construction of a Parametric Derivative-Free Iterative Method With Memory for Dynamic System Analysis

Funds: The National Natural Science Foundation of China(61272024)
  • 摘要: 借鉴含导数两步迭代格式转化成不含导数两步迭代格式的思想,提出了一种更通用的两步无导数迭代格式,通过权值保证了两步无导迭代格式达到最优阶;利用自加速参数和Newton(牛顿)插值多项式得到了两参和三参有记忆迭代格式,并与已有的两参和三参有记忆迭代格式进行比较;给出了几个格式的吸引域,比较了几个迭代格式的性能.
  • [1] Alefeld G, Herzberger J. Introduction to Interval Computation [M]. New York: Academic Press, 1983.
    [2] Chun C, Lee M Y. A new optimal eighth-order family of iterative methods for the solution of nonlinear equations[J]. Applied Mathematics and Computation,2013,223: 506-519.
    [3] Cordero A, Torregrosa J R. Variants of Newton’s method using fifth-order quadrature formulas[J]. Applied Mathematics and Computation,2007,190(1): 686-698.
    [4] Dzuni′c J. On efficient two-parameter methods for solving nonlinear equations[J]. Numerical Algorithms, 2013,63(3): 549-569.
    [5] Duni′c J, Petkovi′c M S. On generalized multipoint root-solvers with memory[J]. Applied Mathematics and Computation,2012,236(11): 2909-2920.
    [6] Ostrowski A M. Solutions of Equations and Systems of Equations [M]. New York: Academic Press, 1966.
    [7] Kung H T, Traub J F. Optimal order of one-point and multi-point iteration[J]. Journal of the Association for Computing Machinery,1974,21 (4): 643-651.
    [8] Ortega J M, Rheinboldt W G. Iterative Solutions of Nonlinear Equations in Several Variables [M]. New York: Academic Press, 1970.
    [9] Cordero A, Torregrosa J R. Low complexity root-finding iteration functions with no derivatives of any order of convergence[J]. Applied Mathematics and Computation,2015,275: 502-515.
    [10] Zafar F, Yasmin N, Kutbib M A, et al. Construction of tri-parametric derivative free fourth order with and without memory iterative method[J]. Journal of Nonlinear Science and Applications, 2016,9(4)〖STHZ〗: 1410-1423.
    [11] WANG Xiao-feng, ZHANG Tie, QIN Yu-ping. Efficient two-step derivative-free iterative methods with memory and their dynamics[J]. International Journal of Computer Mathematics, 2016,93(8): 1423-1446.
    [12] King R F. A family of fourth order methods for non-linear equations[J]. SIAM J Numer Anal, 1973,10 (5): 876-879.
    [13] Cordero A, Lotfi T, Bakhtiari P, et al. An efficient two-parametric family with memory for nonlinear equations[J].Numerical Algorithms,2015,68(2): 323-335.
    [14] Kansal M, Kanwar V, Bhatia S. Efficient derivative-free variants of Hansen-Patrick’s family with memory for solving nonlinear equations[J].Numerical Algorithms,2016,73(4): 1-20.
    [15] Ullah M Z, Kosari S, Soleymani F, et al. A super-fast tri-parametric iterative method with memory[J]. Applied Mathematics and Computation,2016,289: 486-491.
    [16] Neta B, Chun C. On a family of Laguerre methods to find multiple roots of nonlinear equations[J]. Applied Mathematics and Computation,2013,219(23): 10987-11004.
    [17] Neta B, Chun C. Basins of attraction for several optimal fourth order methods for multiple roots[J]. Mathematics and Computers in Simulation,2014,103: 39-59.
  • 加载中
计量
  • 文章访问数:  971
  • HTML全文浏览量:  145
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-10-16
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回