留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类基于忆阻器分数阶时滞神经网络的修正投影同步

张玮玮 陈定元 吴然超 曹进德

张玮玮, 陈定元, 吴然超, 曹进德. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018, 39(2): 239-248. doi: 10.21656/1000-0887.370359
引用本文: 张玮玮, 陈定元, 吴然超, 曹进德. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018, 39(2): 239-248. doi: 10.21656/1000-0887.370359
ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, CAO Jinde. Modified-Projective-Synchronization of Memristor-Based Fractional-Order Delayed Neural Networks[J]. Applied Mathematics and Mechanics, 2018, 39(2): 239-248. doi: 10.21656/1000-0887.370359
Citation: ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, CAO Jinde. Modified-Projective-Synchronization of Memristor-Based Fractional-Order Delayed Neural Networks[J]. Applied Mathematics and Mechanics, 2018, 39(2): 239-248. doi: 10.21656/1000-0887.370359

一类基于忆阻器分数阶时滞神经网络的修正投影同步

doi: 10.21656/1000-0887.370359
基金项目: 国家自然科学基金(11571016);安徽省自然科学基金(11040606M12;1608085MA14);安徽省高等学校自然科学研究重点项目(KJ2015A152);安徽省高校自然科学研究一般项目(AQKJ2014B012)
详细信息
    作者简介:

    张玮玮(1982—),男,讲师,硕士(通讯作者. E-mail: wwzhahu@aliyun.com);陈定元(1975—),男,副教授,硕士(E-mail: aqnu123@163.com);吴然超(1971—),男,教授,博士,博士生导师(E-mail: rcw@ahu.edu.cn);曹进德(1963—),男,教授,博士,博士生导师,欧州科学院院士(E-mail: jdcao@seu.edu.cn).

  • 中图分类号: O415.5

Modified-Projective-Synchronization of Memristor-Based Fractional-Order Delayed Neural Networks

Funds: The National Natural Science Foundation of China(11571016)
  • 摘要: 基于忆阻器分数阶时滞神经网络的研究是一个热点问题.该文主要研究了基于忆阻器分数阶时滞混沌神经网络的修正投影同步.结合分数阶微分不等式, 得到了实现主动被动系统获得同步的充分条件.其研究结果更具有一般性.相应的数值模拟证实了方法的有效性.
  • [1] PODLUBNY I. Fractional Differential Equations [M]. New York: Academic Press, 1999: 105-114.
    [2] BUTZER P L, WESTPHAL U. An Introduction to Fractional Calculus [M]. Singapore: World Scientic, 2000: 22-45.
    [3] MANDELBROT B B. The Fractal Geometry of Nature [M]. New York: Freeman, 1996: 65-69.
    [4] Hilfer R. Applications of Fractional Calculus in Physics [M]. NJ: World Scientic, 2001: 87-92.
    [5] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Application of Fractional Differential Equations [M]. Amsterdam: Elsevier, 2006: 43-48.
    [6] BAO Haibo, CAO Jinde. Projective synchronization of fractional-order memristor-based neural networks[J]. Neural Networks,2015,63(2): 1-9.
    [7] YU Juan, HUA Cheng, JIANG Haijun, et al. Projective synchronization for fractional neural networks[J]. Neural Networks,2014,49(2): 87-95.
    [8] KASLIK E, SIVASUNDARAM S. Nonlinear dynamics and chaos in fractional-order neural networks[J]. Neural Networks,2012,32(3): 245-256.
    [9] CHEN Jiejie, ZENG Zhigang, JIANG Ping. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural Networks,2014,51(2): 1-8.
    [10] WU Ailong, WEN Shiping, ZENG Zhigang. Synchronization control of a class of memristor-based recurrent neural networks[J]. Information Sciences,2012,183(1): 106-116.
    [11] LI Ning, CAO Jinde. New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes[J]. Neural Networks,2015,61: 1-9.
    [12] CHAKRABORTY K, CHAKRABORTY M, KAR T K. Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay[J]. Nonlinear Analysis: Hybrid Systems,2011,5(4): 613-625.
    [13] MA Chao, WANG Xingyuan. Impulsive control and synchronization of a new unified hyperchaotic system with varying control gains and impulsive intervals[J]. Nonlinear Dynamics,2012,70(1): 551-558.
    [14] 闫欢, 赵振江, 宋乾坤. 具有泄漏时滞的复值神经网络的全局同步性[J]. 应用数学和力学, 2016,37(8): 832-841.(YAN Huan, ZHAO Zhenjiang, SONG Qiankun. Global synchronization of complex-valued neural networks with leakage time delays[J]. Applied Mathematics and Mechanics,2016,37(8): 832-841.(in Chinese))
    [15] ZHAO Hongyong, ZHANG Qi. Global impulsive exponential anti-synchronization of delayed chaotic neural networks[J]. Neurocomputing,2011,74(4): 563-567.
    [16] WANG Ling, ZHAO Hongyong. Synchronized stability in a reaction-diffusion neural network model[J]. Physics Letters A,2014,378(48): 3586-3599.
    [17] WANG Ling, ZHAO Hongyong, CAO Jinde. Synchronized bifurcation and stability in a ring of diffusively coupled neurons with time delay[J]. Neural Networks,2016,75: 32-46.
    [18] PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8): 821-824.
    [19] RAKKIYAPPAN R, VELMURUGAN G, CAO Jinde. Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays[J]. Nonlinear Dynamics,2014,78(4): 2823-2832.
    [20] WU Ranchao, LU Yanfen, CHEN Liping. Finite-time stability of fractional delayed neural networks[J]. Neurocomputing,2015,149: 700-707.
    [21] STAMOVA I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays[J]. Nonlinear Dynamics,2014,77(4): 1-10.
    [22] CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions on Circuit Theory,1971,18(5): 507-519.
    [23] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature,2011,453(7191): 80-88.
    [24] TOUR J M, HE Tao. Electronics: the fourth element[J]. Nature,2011,453(7191): 42-43.
    [25] 胡进, 宋乾坤. 基于忆阻的时滞神经网络的全局稳定性[J]. 应用数学和力学, 2013,34(7): 724-735.(HU Jin, SONG Qiankun. Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays[J].Applied Mathematics and Mechanics,2013,34(7): 724-735.(in Chinese))
    [26] GUO Zhenyuan, WANG Jun, YAN Zheng. Attractivity analysis of memristor-based cellular neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(4): 704-717.
    [27] WEN Shiping, BAO Gang, ZENG Zhigang, et al. Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays[J]. Neural Networks,2013,48(1): 195-203.
    [28] ZHANG Guodong, SHEN Yi. New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(10): 1701-1707.
    [29] CHEN Jiejie, ZENG Zhigang, JIANG Ping. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural Networks,2014,51(1): 1-8.
    [30] ZHANG Guodong, SHEN Yi. Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control[J]. Neural Networks,2014,55: 1-10.
    [31] BAO Haibo, PARK J H, CAO Jinde. Adaptive synchronization of fractional-order memristor-based neural networks with time delay[J]. Nonlinear Dynamics,2015,82(3): 1343-1354.
    [32] CHEN Liping, QU Jianfeng, CHAI Yi, et al. Synchronization of a class of fractional order chaotic neural networks[J]. Entropy,2013,15(2): 3265-3276.
    [33] ZHANG Shuo, YU Yongguang, WANG Hu. Mittag-Leffler stability of fractional order Hopfield neural networks[J]. Nonlinear Analysis: Hybrid Systems,2015,16(2): 104-121.
  • 加载中
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  221
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-18
  • 修回日期:  2017-01-24
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回