留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性Hamilton系统边值问题的保辛数值方法

蒋宪宏 邓子辰 张凯 王嘉琪

蒋宪宏, 邓子辰, 张凯, 王嘉琪. 线性Hamilton系统边值问题的保辛数值方法[J]. 应用数学和力学, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365
引用本文: 蒋宪宏, 邓子辰, 张凯, 王嘉琪. 线性Hamilton系统边值问题的保辛数值方法[J]. 应用数学和力学, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365
JIANG Xian-hong, DENG Zi-chen, ZHANG Kai, WANG Jia-qi. A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365
Citation: JIANG Xian-hong, DENG Zi-chen, ZHANG Kai, WANG Jia-qi. A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365

线性Hamilton系统边值问题的保辛数值方法

doi: 10.21656/1000-0887.370365
基金项目: 国家自然科学基金(11432010)
详细信息
    作者简介:

    蒋宪宏(1991—),男,硕士生(E-mail: Jhonstarx@mail.nwpu.edu.cn);邓子辰(1964—),男,教授,博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: O302; O241

A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems

Funds: The National Natural Science Foundation of China(11432010)
  • 摘要: 以Hamilton系统的正则变换和生成函数为基础研究线性时变Hamilton系统边值问题的保辛数值求解算法.根据第二类生成函数系数矩阵与状态传递矩阵的关系,构造了生成函数系数矩阵的区段合并递推算法,并进一步将递推算法推广到线性非齐次边值问题中;然后利用生成函数的性质将边值问题转化为初值问题,最后采用初值问题的保辛算法求解以达到整个Hamilton系统保辛的目的.数值算例表明该方法能够有效地求解线性齐次与非齐次问题,并能很好地保持Hamilton系统的固有特性.
  • [1] Liberzon D. Calculus of Variations and Optimal Control Theory: A Concise Introduction [M]. Princeton, NJ: Princeton University Press, 2011.
    [2] 陈文斌, 程晋, 吴新明, 等. 微分方程数值解[M]. 上海: 复旦大学出版社, 2014.(CHEN Wen-bin, CHENG Jin, WU Xin-ming, et al. Numerical Method of Ordinary Differential Equations [M]. Shanghai: Fudan University Press, 2014.(in Chinese))
    [3] FENG Kang, QIN Meng-zhao. Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Springer Berlin Heidelberg, 2010.
    [4] 钟万勰, 吴志刚, 谭述君. 状态空间控制理论与计算中的几个问题——分析结构力学的观点[J]. 航天控制, 2007,25(6): 3-12.(ZHONG Wan-xie, WU Zhi-gang, TAN Shu-jun. Some issues in theory and computation of state-space control—an analytical structural mechanics vewpoint[J]. Aerospace Control,2007,25(6): 3-12.(in Chinese))
    [5] 钟万勰, 高强, 彭海军. 经典力学——辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun. Classical Mechanics——Its Symplectic Description [M]. Dalian: Dalian University of Technology Press, 2013.(in Chinese))
    [6] Kobilarov M B, Marsden J E. Discrete geometric optimal control on Lie groups[J]. IEEE Transactions on Robotics,2011,27(4): 641-655.
    [7] Guibout V M, Scheeres D J. Solving two-point boundary value problems using generating functions: theory and applications to optimal control and the study of Hamiltonian dynamical systems[J]. 2003. arXiv: math/0310475.
    [8] Park C, Scheeres D J. Determination of optimal feedback terminal controllers for general boundary conditions using generating functions[J]. Automatica,2006,42(5): 869-875.
    [9] Park C, Scheeres D J, Guibout V. Solving optimal continuous thrust rendezvous problems with generating functions[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences . San Francisco, California, 2005.
    [10] WU Zhi-gang, Mesbahi M. Symplectic transformation based analytical and numerical methods for linear quadratic control with hard terminal constraints[J]. SIAM Journal on Control and Optimization,2012,50(2): 652-671.
    [11] 彭海军. 计算最优控制的保辛数值方法及其在平动点附近航天器控制中的应用[D]. 博士学位论文. 大连: 大连理工大学, 2012.(PENG Hai-jun. Symplectic numerical method for computational optimal contorl and its application in the control of spacecraft near the libration point[D]. PhD Thesis. Dalian: Dalian University of Technology, 2012.(in Chinese))
    [12] PENG Hai-jun, GAO Qiang, WU Zhi-gang, et al. Symplectic approaches for solving two-point boundary-value problems[J]. Journal of Guidance, Control, and Dynamics,2012,35(2): 653-659.
    [13] PENG Hai-jun, TAN Shu-jun, GAO Qiang, et al. Symplectic method based on generating function for receding horizon control of linear time-varying systems[J]. European Journal of Control,2017,33: 24-34.
    [14] Goldstein H, Poole C P, Safko J L. Classical Mechanics [M]. 3rd ed. San Francisco: Addison-Wesley, 2001.
    [15] Iserles A, Nrsett S P. On the solution of linear differential equations in Lie groups[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences,1999,357(1754): 983-1019.
    [16] 谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007,39(3): 374-381.(TANG Shu-jun, ZHONG Wan-xie. Precise integration method for Duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(3): 374-381.(in Chinese))
    [17] Rao A V, Benson D A, Darby C, et al. Corrigendum: Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method[J]. Acm Transactions on Mathematical Software,2010,37(2). doi: 10.1145/1731022.1731032.
  • 加载中
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  172
  • PDF下载量:  898
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-06-20
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回