留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的混合流体对流竖向镜面对称对传波斑图

宁利中 渠亚伟 宁碧波 袁喆 田伟利 刘爽

宁利中, 渠亚伟, 宁碧波, 袁喆, 田伟利, 刘爽. 一种新的混合流体对流竖向镜面对称对传波斑图[J]. 应用数学和力学, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367
引用本文: 宁利中, 渠亚伟, 宁碧波, 袁喆, 田伟利, 刘爽. 一种新的混合流体对流竖向镜面对称对传波斑图[J]. 应用数学和力学, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367
NING Li-zhong, QU Ya-wei, NING Bi-bo, YUAN Zhe, TIAN Wei-li, LIU Shuang. A New-Type Counterpropagating Wave Pattern of Vertical Mirror Symmetry in Binary Fluid Convection[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367
Citation: NING Li-zhong, QU Ya-wei, NING Bi-bo, YUAN Zhe, TIAN Wei-li, LIU Shuang. A New-Type Counterpropagating Wave Pattern of Vertical Mirror Symmetry in Binary Fluid Convection[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367

一种新的混合流体对流竖向镜面对称对传波斑图

doi: 10.21656/1000-0887.370367
基金项目: 国家自然科学基金(10872164); 陕西省重点学科建设专项资金(00X901)
详细信息
    作者简介:

    宁利中(1961—),男,教授,博士(通讯作者. E-mail: ninglz@xaut.edu.cn).

  • 中图分类号: O357

A New-Type Counterpropagating Wave Pattern of Vertical Mirror Symmetry in Binary Fluid Convection

Funds: The National Natural Science Foundation of China(10872164)
  • 摘要: 利用SIMPLE算法对混合流体对流的流体力学基本方程组进行了数值模拟,在混合流体分离比ψ=-0.6和矩形腔体长高比Γ=20的情况下,首次发现了一种新的竖向镜面对称对传波斑图,并初步探讨了它的动力学特性.竖向镜面对称对传波斑图的中心为驻波,随着时间的发展驻波的波长伸长.当波长增加到某个临界值时,一个滚动分裂成两个滚动,在这两个滚动之间产生一个具有180°相位差的新滚动.位于中心线上的滚动只有相位的突变及其波长的压缩或者伸长,没有对流滚动的移动,在它的两侧是向左右传播的对流滚动.驻波两次相位突变形成一个周期,驻波周期随着相对Rayleigh(瑞利)数Rar的增加而增加.这种对流结构存在于相对Rayleigh数Rar∈(3.6,4.3]的范围.当相对Rayleigh数Rar≤3.6时,系统出现具有缺陷的行波斑图;当Rar>4.3时系统过渡到行波斑图.说明竖向镜面对称对传波斑图是存在于具有缺陷的行波斑图和行波斑图之间的一种稳定的对流斑图.
  • [1] Cross M C, Hohenberg P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 851-1112.
    [2] Getling A V. Rayleigh-Bénard Convection [M]. London: World Scientific, 1998.
    [3] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability [M]. Oxford: Clarendon Press, 1961.
    [4] Rabinovich M I, Ezersky A B, Weidman P D. The Dynamics of Patterns [M]. Singapore: World Scientific, 2000.
    [5] Walden R W, Kolodner P, Passner A, et al. Traveling waves and chaos in convection in binary fluid mixtures[J]. Physical Review Letters,1985,55(5): 496-499.
    [6] Niemela J J, Ahlers G, Cannell D S. Localized traveling-wave states in binary-fluid convection[J]. Physical Review Letters,1990,64(12): 1365-1368.
    [7] Harada Y, Masuno Y, Sugihara K. Convective motion in space and time: defect mediated localized traveling waves[J]. Vistas in Astronomy,1993,37: 107-110.
    [8] Ma Y-P, Burke J, Knobloch E. Defect-mediated snaking: a new growth mechanism for localized structures[J]. Physica D: Nonlinear Phenomena,2010,239(19): 1867-1883.
    [9] Watanabe T, Iima M, Nishiura Y. Spontaneous formation of travelling localized structures and their asymptotic behaviours in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
    [10] Muller H W, Tveitereid M, Trainoff S. Rayleigh-Bénard problem with imposed weak through-flow: two coupled Ginzburg-Landau equations[J]. Physical Review E,1993,48(1): 263-272.
    [11] 王卓运, 宁利中, 王娜, 等. 基于振幅方程组的行波对流的数值模拟[J]. 西安理工大学学报, 2014,30(2): 163-169.(WANG Zhuo-yun, NING Li-zhong, WANG Na, et al. Numerical simulation of traveling wave convection based on amplitude equations[J]. Journal of Xi’an University of Technology,2014,30(2): 163-169.(in Chinese))
    [12] Yahata H. Travelling convection rolls in a binary fluid mixture[J]. Progress of Theoretical Physics,1991,85(5): 933-937.
    [13] Barten W, Lucke M, Kamps M. Localized traveling-wave convection in binary-fluid mixtures[J]. Physical Review Letters,1991,66(20): 2621-2624.
    [14] Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures I: extended traveling-wave and stationary states[J]. Physical Review E,1995,51(6): 5636-5661.
    [15] Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures II: localized traveling waves[J]. Physical Review E,1995,51(6): 5662-5682.
    [16] NING Li-zhong, Harada Y, Yahata H. Localized traveling waves in binary fluid convection[J]. Progress of Theoretical Physics,1996,96(4): 669-682.
    [17] NING Li-zhong, Harada Y, Yahata H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J]. Progress of Theoretical Physics,1997,97(6): 831-848.
    [18] NING Li-zhong, Harada Y, Yahata H. Formation process of the traveling-wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
    [19] NING Li-zhong, Harada Y, Yahata H, et al. Fully-developed traveling wave convection in binary fluid mixtures with lateral flows[J]. Progress of Theoretical Physics,2001,106(3): 503-512.
    [20] 宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Benard 行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Li-zhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese))
    [21] 宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学(G辑: 物理学 力学 天文学), 2009,39(5): 746-751.(NING Li-zhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Science in China(Series G: Physics, Mechanics & Astronomy),2009,39(5): 746-751.(in Chinese))
    [22] 宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401. doi: 10.7498/aps.63.104401.(NING Li-zhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta Physica Sinica,2014,63(10): 104401. doi: 10.7498/aps.63.104401.(in Chinese))
    [23] 宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Li-zhong, WANG Yong-qi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
    [24] 宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401. doi: 10.7498/aps.65.214401.(NING Li-zhong, HU Biao, NING Bi-bo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401. doi: 10.7498/aps.65.214401.(in Chinese))
    [25] NING Li-zhong, QI Xin, YUAN Zhe, et al. A counter propagating wave state with a periodically horizontal motion of defects[J]. Journal of Hydrodynamics,2008,20(5): 567-573.
    [26] 胡军, 尹协远. 双流体Poiseuille-Rayleigh-Bénard流动中脉冲扰动的时空演化[J]. 中国科学技术大学学报, 2007,37(10): 1267-1272.(HU Jun, YIN Xie-yuan. Spatio-temporal evolution of pulse like perturbation for Poiseuille-Rayleigh-Bénard flows in binary fluids[J]. Journal of University of Science and Technology of China,2007,37(10): 1267-1272.(in Chinese))
    [27] HU Jun, YIN Xie-yuan. Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect[J]. Progress in Nature Science,2007,17(12): 1389-1396.
    [28] ZHAO Bing-xin, TIAN Zhen-fu. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J]. Physics of Fluids,2015,27: 074102.
    [29] Taraut A V, Smorodin B L, Lucke M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055.
    [30] Mercader I, Batiste O, Alonso A, et al. Travelling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-266.
    [31] Mercader I, Batiste O, Alonso A, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. doi: 10.1088/0169-5983/42/2/025505.
    [32] Mercader I, Batiste O, Alonso A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
    [33] Batiste O, Knobloch E, Alonso A, et al. Spatially localized binary-fluid convection[J]. Journal of Fluid Mechanics,2006,560: 149-158.
    [34] Bensimon D, Kolodner P, Surko C M, et al. Competing and coexisting dynamical states of travelling-wave convection in an annulus[J]. Journal of Fluid Mechanics,1990,217: 441-467.
    [35] 胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Li-zhong, NING Bi-bo, et al. Effects of horizontal flow on perturbation growth and convection periodicity[J]. Applied Mathematics and Mechanics,2017,38(10): 1103-1111.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1077
  • HTML全文浏览量:  148
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-05-14
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回