留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有变化分布时滞的复值神经网络Lagrange稳定性

张磊 宋乾坤

张磊, 宋乾坤. 带有变化分布时滞的复值神经网络Lagrange稳定性[J]. 应用数学和力学, 2017, 38(10): 1180-1186. doi: 10.21656/1000-0887.370378
引用本文: 张磊, 宋乾坤. 带有变化分布时滞的复值神经网络Lagrange稳定性[J]. 应用数学和力学, 2017, 38(10): 1180-1186. doi: 10.21656/1000-0887.370378
ZHANG Lei, SONG Qian-kun. Lagrangian Stability of Complex-Valued Neural Networks With Distributed Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1180-1186. doi: 10.21656/1000-0887.370378
Citation: ZHANG Lei, SONG Qian-kun. Lagrangian Stability of Complex-Valued Neural Networks With Distributed Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1180-1186. doi: 10.21656/1000-0887.370378

带有变化分布时滞的复值神经网络Lagrange稳定性

doi: 10.21656/1000-0887.370378
基金项目: 国家自然科学基金(61773004);重庆高校创新团队建设计划(CXTDX201601022)
详细信息
    作者简介:

    张磊(1964—), 男, 讲师(E-mail: 1790279118@qq.com);宋乾坤(1963—), 男, 教授, 博士(通讯作者. E-mail: qiankunsong@163.com).

  • 中图分类号: O175.13

Lagrangian Stability of Complex-Valued Neural Networks With Distributed Time-Varying Delays

Funds: The National Natural Science Foundation of China(61773004)
  • 摘要: 研究了带有变化分布时滞的复值神经网络Lagrange稳定性问题.通过构造合适的LyapunovKrasovskii泛函, 并使用矩阵不等式技巧,建立了网络全局指数Lagrange稳定性的判定条件.提供的判据是复值线性矩阵不等式, 能够使用MATLAB软件的YALMIP工具箱快速计算.
  • [1] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceeding of the National Academy of Sciences of the United States of America,1982,79: 2554-2558.
    [2] 廖晓昕. Hopfield型神经网络的稳定性[J]. 中国科学(A辑), 1993,23(10): 1025-1035.(LIAO Xiao-xin. Stability of Hopfield neural networks[J]. Science in China (Series A),1993,23(10): 1025-1035.(in Chinese))
    [3] 曹进德, 李继彬. 具有交互神经传递时滞的神经网络的稳定性[J]. 应用数学和力学, 1998,19(5): 425-430.(CAO Jin-de, LI Ji-bin. The stability in neural networks with interneuronal transmission delays[J]. Applied Mathematics and Mechanics,1998,19(5): 425-430.(in Chinese))
    [4] 王林山, 徐道义. 变时滞反应扩散Hopfield神经网络的全局指数稳定性[J]. 中国科学(E辑), 2003,33(6): 488-495.(WANG Lin-shan, XU Dao-yi. Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays[J]. Science in China (Series E),2003,33(6): 488-495.(in Chinese))
    [5] Arik S. Stability analysis of delayed neural networks[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2000,47(7): 1089-1092.
    [6] SONG Qian-kun, CAO Jin-de. Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays[J]. Journal of Computational and Applied Mathematics,2006,197(1): 188-203.
    [7] Balasubramaniam P, Vembarasan V, Rakkiyappan R. Global robust asymptotic stability analysis of uncertain switched Hopfield neural networks with time delay in the leakage term[J]. Neural Computing and Applications,2012,21(7): 1593-1616.
    [8] Kwon O M, Park Ju H, Lee S M, et al. New augmented Lyapunov-Krasovskii functional approach to stability analysis of neural networks with time-varying delays[J]. Nonlinear Dynamics,2014,76(1): 221-236.
    [9] Raja R, ZHU Quan-xin, Senthilraj S, et al. Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects[J]. Applied Mathematics and Computation,2015,266: 1050-1069.
    [10] 闫欢, 赵振江, 宋乾坤. 具有泄漏时滞的复值神经网络的全局同步性[J]. 应用数学和力学, 2016,37(8): 832-841.(YAN Huan, ZHAO Zhen-jiang, SONG Qian-kun. Global synchronization of complex-valued neural networks with leakage time delays[J]. Applied Mathematics and Mechanics,2016,37(8): 832-841.(in Chinese))
    [11] Hirose A. Complex-Valued Neural Networks: Theories and Applications [M]. Singapore: World Scientific, 2003.
    [12] Lee D L. Relaxation of the stability condition of the complex-valued neural networks[J]. IEEE Transactions on Neural Networks,2001,12(5): 1260-1262.
    [13] Sree H R V, Murthy G. Global dynamics of a class of complex valued neural networks[J]. International Journal of Neural Systems,2008,18(2): 165-171.
    [14] ZHOU Wei, Zurada J M. Discrete-time recurrent neural networks with complex-valued linear threshold neurons[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2009,56(8): 669-673.
    [15] HU Jin, WANG Jun. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(6): 853-865.
    [16] ZHOU Bo, SONG Qian-kun. Boundedness and complete stability of complex-valued neural networks with time delay[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(8): 1227-1238.
    [17] Rakkiyappan R, Velmurugan G, LI Xiao-di. Complete stability analysis of complex-valued neural networks with time delays and impulses[J]. Neural Processing Letters,2015,41(3): 435-468.
    [18] SONG Qian-kun, YAN Huan, ZHAO Zhen-jiang, et al. Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects[J]. Neural Networks,2016,79: 108-116.
    [19] SONG Qian-kun, YAN Huan, ZHAO Zhen-jiang, et al. Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays[J]. Neural Networks,2016,81: 1-10.
    [20] SONG Qian-kun, ZHAO Zhen-jiang. Stability criterion of complex-valued neural networks with both leakage delay and time-varying delays on time scales[J]. Neurocomputing,2016,171: 179-184.
    [21] ZHANG Lei, SONG Qian-kun, ZHAO Zhen-jiang. Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays[J]. Applied Mathematics and Computation,2017,298: 296-309.
    [22] LIAO Xiao-xin, LUO Qi, ZENG Zhi-gang, et al. Global exponential stability in Lagrange sense for recurrent neural networks with time delays[J]. Nonlinear Analysis: Real World Applications,2008,9(4): 1535-1557.
    [23] WANG Xiao-hong, JIANG Ming-hui, FANG Sheng-le. Stability analysis in Lagrange sense for a non-autonomous Cohen-Grossberg neural network with mixed delays[J]. Nonlinear Analysis: Theory, Methods & Applications,2009,70(12): 4294-4306.
    [24] ZHANG Guo-dong, SHEN Yi, XU Cheng-jie. Global exponential stability in a Lagrange sense for memristive recurrent neural networks with time-varying delays[J]. Neurocomputing,2015,149: 1330-1336.
    [25] TU Zheng-wen, CAO Jin-de, Hayat T. Global exponential stability in Lagrange sense for inertial neural networks with time-varying delays[J]. Neurocomputing,2016,171: 524-531.
    [26] TU Zheng-wen, CAO Jin-de. Lagrange stability of complex-valued neural networks with time-varying delays[C]//8th International Conference on Advanced Computational Intelligence . Chiang Mai, Thailand, 2016.
  • 加载中
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  228
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2016-12-13
  • 刊出日期:  2017-10-15

目录

    /

    返回文章
    返回