留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FPSO船与低充水率下LNG液舱晃荡耦合运动的数值模拟

庄园 万德成

庄园, 万德成. FPSO船与低充水率下LNG液舱晃荡耦合运动的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1378-1393. doi: 10.21656/1000-0887.370516
引用本文: 庄园, 万德成. FPSO船与低充水率下LNG液舱晃荡耦合运动的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1378-1393. doi: 10.21656/1000-0887.370516
ZHUANG Yuan, WAN De-cheng. Numerical Study on Coupling Effects of FPSO Ship Motion and LNG Tank Sloshing in Low-Filling Conditions[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1378-1393. doi: 10.21656/1000-0887.370516
Citation: ZHUANG Yuan, WAN De-cheng. Numerical Study on Coupling Effects of FPSO Ship Motion and LNG Tank Sloshing in Low-Filling Conditions[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1378-1393. doi: 10.21656/1000-0887.370516

FPSO船与低充水率下LNG液舱晃荡耦合运动的数值模拟

doi: 10.21656/1000-0887.370516
基金项目: 国家自然科学基金(51379125; 51490675; 11432009; 51579145; 11272120);长江学者奖励计划(T2014099)
详细信息
    作者简介:

    万德成,E-mail: dcwan@sjtu.edu.cn

  • 中图分类号: O35

Numerical Study on Coupling Effects of FPSO Ship Motion and LNG Tank Sloshing in Low-Filling Conditions

Funds: National Natural Science Foundation of China(51379125; 51490675; 11432009; 51579145; 11272120) and the Chang Jiang Scholars Program of China(T2014099)
  • 摘要: 应用数值模拟方法对FPSO船舶运动与LNG液舱晃荡耦合问题进行了研究.这种全耦合问题的研究基于开源平台OpenFOAM开发的船舶与海洋工程水动力CFD求解器——naoe-FOAM-SJTU进行计算.液舱内部流场与外部流场同时求解.采用带有两个LNG液舱的FPSO船作为对象进行数值模拟,船舶放开3个自由度运动,并在90°浪向的规则波中进行模拟.液舱充水率为20%~20%,低于船外自由水面高度.这种低充水率的液舱会大大减少船舶的横摇运动,并且舱内的流体情况较为复杂.考虑了4种不同的入射波频率下船舶的运动,与实验结果进行了对比.数值模拟结果与实验结果对比吻合良好,验证了数值求解方法的可靠性.还对大波高情况下带有低充水率LNG液舱的船舶运动进行了数值模拟分析.在船舶运动与液舱晃荡全耦合情况下,观察到了液舱内流体的剧烈晃荡和舱壁的脉冲压力.
  • [1] Mikelis N E, Miller J K, Taylor K V. Sloshing in partially filled liquid tanks and its effect on ship motions: numerical simulations and experimental verification[J].Royal Institution of Naval Architects Transactions,1984,126: 267-281.
    [2] Malenica S, Zalar M, Chen X B. Dynamic coupling of seakeeping and sloshing[C]// Thirteenth (2003) International Offshore and Polar Engineering Conference.Honolulu, Hawaii, 2003: 25-30.
    [3] Kim Y A. A numerical study on sloshing flows coupled with ship motion—the anti-rolling tank problem[J].Journal of Ship Research,2002,46(1): 52-62.
    [4] Kim Y, Shin Y S, Lin W M, Yue D K P. Study on sloshing problem coupled with ship motion in waves[C]//The Eighth International Conference on Numerical Ship Hydrodynamics. 2003.
    [5] Nam B W, Kim Y, Kim D W, Kim Y S. Experimental and numerical studies on ship motion responses coupled with sloshing in waves[J].Journal of Ship Research,2009,53(2): 68-82.
    [6] Serván-Camas B, Cercós-Pita J L, Colom-Cobb J, García-Espinosa J, Souto-Iglesias A. Time domain simulation of coupled sloshing-seakeeping problems by SPH-FEM coupling[J].Ocean Engineering,2016,123: 383-396.
    [7] LI Yu-long, ZHU Ren-chuan, MIAO Guo-ping, FAN Ju. Simulation of tank sloshing based on OpenFOAM and coupling with ship motions in time domain[J].Journal of Hydrodynamics, Ser B,2012,24(3): 450-457.
    [8] JIANG Sheng-chao, TENG Bin, BAI Wei, GOU Ying. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action[J]. Ocean Engineering,2015,108: 140-154.
    [9] Sen D. Time-domain computation of large amplitude 3D ship motions with forward speed[J].Ocean Engineering,2002,29(8): 973-1002.
    [10] SHEN Zhi-rong, YE Hai-xuan, WAN De-cheng. Motion response and added resistance of ship in head waves based on RANS simulations[J].Chinese Journal of Hydrodynamics,2012,27(6): 621-633.
    [11] WANG Jian-hua, WAN De-cheng, CHEN Gang. Comparative studies of 3-D LNG tank sloshing based on the VOF and IMPS methods[C]//The 26th International Ocean and Polar Engineering Conference.Rhodes, Greece, 2016.
    [12] Shen Z R, Wan D C. Numerical simulations of large-amplitude motions of KVLCC2 with tank liquid sloshing in waves[C]// 2nd International Conference on Violent Flows.2012: 129-156.
    [13] Dhakal T P, Walters D K. Curvature and rotation sensitive variants of thek -Omega SST turbulence model[C]//ASME 2009 Fluids Engineering Division Summer Meeting . Vail, Colorado, 2009: 2221-2229.
    [14] Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics,1986:62(1): 40-65.
    [15] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J].AIAA Journal,1983,21(11): 1525-1532.
  • 加载中
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  108
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2016-12-09
  • 刊出日期:  2016-12-15

目录

    /

    返回文章
    返回