留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全附体ONRT船模在波浪中自航的数值模拟

王建华 万德成

王建华, 万德成. 全附体ONRT船模在波浪中自航的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1345-1358. doi: 10.21656/1000-0887.370525
引用本文: 王建华, 万德成. 全附体ONRT船模在波浪中自航的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1345-1358. doi: 10.21656/1000-0887.370525
WANG Jian-hua, WAN De-cheng. Investigations of Self-Propulsion in Waves of Fully Appended ONR Tumblehome Model[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1345-1358. doi: 10.21656/1000-0887.370525
Citation: WANG Jian-hua, WAN De-cheng. Investigations of Self-Propulsion in Waves of Fully Appended ONR Tumblehome Model[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1345-1358. doi: 10.21656/1000-0887.370525

全附体ONRT船模在波浪中自航的数值模拟

doi: 10.21656/1000-0887.370525
基金项目: 国家自然科学基金(51379125; 51490675; 11432009; 51579145; 11272120); 长江学者奖励计划(T2014099)
详细信息
    作者简介:

    万德成,E-mail: dcwan@sjtu.edu.cn

  • 中图分类号: U661.1; O242; O359

Investigations of Self-Propulsion in Waves of Fully Appended ONR Tumblehome Model

Funds: National Natural Science Foundation of China(51379125; 51490675; 11432009; 51579145; 11272120) and the Chang Jiang Scholars Program of China(T2014099)
  • 摘要: 采用基于重叠网格技术的CFD方法数值研究了全附体ONRT船模在迎浪工况中自航的水动力特性.文中数值计算采用自主开发的面向船舶与海洋工程的CFD求解器naoe-FOAM-SJTU.自航计算中船体运动及螺旋桨转动等通过重叠网格技术完成,波浪环境则采用求解器中的三维数值造波和消波模块实现.计算中自航船模的螺旋桨转速通过静水自航数值计算得出,波浪工况计算采用东京2015 CFD会议中标准算例进行设置.数值计算结果,如船体运动、实时航速变化等,与试验数据进行了对比分析.此外,给出了数值预报的推力和扭矩系数,并且通过详细的流场信息来分析和解释了船模在波浪中自航过程中的水动力变化情况.数值预报结果同试验值吻合较好,说明采用当前结合重叠网格技术和CFD的数值方法可以很好地预报波浪中自航问题.
  • [1] Simmonsen C D, Otzen J F, Joncquez S, Stern F. EFD and CFD for KCS heaving and pitching in regular head waves[J]. Journal of Marine Science and Technology,2013,18(4): 435-459.
    [2] SHEN Zhi-rong, YE Hai-xuan, WAN De-cheng. Motion response and added resistance of ship in head waves based on RANS simulations[J]. Chinese Journal of Hydrodynamics,2012,27(6): 621-633.
    [3] Sato Y, Miyata H, Sato T. CFD simulation of 3-dimensional motion of a ship in waves: application to an advancing ship in regular heading waves[J]. Journal of Marine Science and Technology,1999,4(3): 108-116.
    [4] SHEN Zhi-rong, WAN De-cheng. RANS computations of added resistance and motions of a ship in head waves[J]. International Journal of Offshore and Polar Engineering,2013,23(4): 264-271.
    [5] Carrica P M, Wilson R V, Noack R W, Stern F. Ship motions using single-phase level set with dynamic overset grids[J]. Computers & Fluids,2007,36(9): 1415-1433.
    [6] Broglia R, Dubbioso G, Durante D, di Mascio A. Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: single rudder configuration[J]. Ocean Engineering,2015,105: 275-286.
    [7] Dubbioso G, Durante D, di Mascio A, Broglia R. Turning ability analysis of a fully appended twin screw vessel by CFD. Part II: single vs twin rudder configuration[J]. Ocean Engineering,2016,117: 259-271.
    [8] SHEN Zhi-rong, WAN De-cheng, Carrica P M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering[J]. Ocean Engineering,2015,108: 287-306.
    [9] Shen Z, Cao H, Ye H, Wan D. The manual of CFD solver for ship and ocean engineering flows: naoe-FOAM-SJTU[R]. Shanghai Jiao Tong University, 2012.
    [10] Jasak H, Jemcov A, Tukovic Z. OpenFOAM: a C++ library for complex physics simulations[C]// Proceedings of International Workshop on Coupled Methods in Numerical Dynamics.Dubrovnik, Croatia: IUC, 2007.
    [11] Menter F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics,2009,23(4): 305-316.
    [12] Weller H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow[R]. Report TR/HGW/04, OpenCFD Ltd, 2008.
    [13] Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics,1986,62(1): 40-65.
    [14] Holmes D G, Connell S D. Solution of the 2D Navier-Stokes equations on unstructured adaptive grids[C]//9th Computational Fluid Dynamics Conference . Buffalo, New York, USA: AIAA-89-1932, 1989.
    [15] Noack R W, Boger D A, Kunz R F, Carrica P M. Suggar++: an improved general overset grid assembly capability[C]//19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conferences.San Antonio, Texas, 2009.
    [16] CAO Hong-jian, WAN De-cheng. Development of multidirectional nonlinear numerical wave tank by naoe-FOAM-SJTU solver[J]. International Journal of Ocean System Engineering,2014,4(1): 52-59.
    [17] CAO Hong-jian, WAN De-cheng. RANS-VOF solver for solitary wave run-up on a circular cylinder[J]. China Ocean Engineering,2015,29(2): 183-196.
    [18] SHEN Zhi-rong, WAN De-cheng. An irregular wave generating approach based on naoe-FOAM-SJTU solver[J].China Ocean Engineering,2016,30(2): 177-192.
    [19] Sanada Y, Tanimoto K, Takagi K, Gui L, Toda Y, Stern F. Trajectories for ONR tumblehome maneuvering in calm water and waves[J].Ocean Engineering,2013,72: 45-65.
    [20] Wang J, Zhao W, Wan D. Free maneuvering simulation of ONR tumblehome using overset grid method in naoe-FOAM-SJTU[C]//31st Symposium on Naval Hydrodynamics.Monterey, CA, USA, 2016.
    [21] National Maritime Research Institute (NMRI). Tokyo 2015: a workshop on CFD in ship hydrodynamics[Z/OL]. (2015-12-02)[2016-12-08]. http:// www.t2015.nmri.go.jp.
  • 加载中
计量
  • 文章访问数:  1846
  • HTML全文浏览量:  167
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2016-11-27
  • 刊出日期:  2016-12-15

目录

    /

    返回文章
    返回