留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用

付宝连

付宝连. 有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用[J]. 应用数学和力学, 2017, 38(11): 1251-1268. doi: 10.21656/1000-0887.380004
引用本文: 付宝连. 有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用[J]. 应用数学和力学, 2017, 38(11): 1251-1268. doi: 10.21656/1000-0887.380004
FU Bao-lian. Variational Principles for Dual and Triple Mixed Variables of Linear Elasticity With Finite Displacements and the Application[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1251-1268. doi: 10.21656/1000-0887.380004
Citation: FU Bao-lian. Variational Principles for Dual and Triple Mixed Variables of Linear Elasticity With Finite Displacements and the Application[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1251-1268. doi: 10.21656/1000-0887.380004

有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用

doi: 10.21656/1000-0887.380004
详细信息
    作者简介:

    付宝连(1934—),男,教授(E-mail: ysufubaolian@163.com).

  • 中图分类号: O343

Variational Principles for Dual and Triple Mixed Variables of Linear Elasticity With Finite Displacements and the Application

  • 摘要: 提出了有限位移理论线弹性力学二类混合变量和三类混合变量的变分原理.考虑已知边界条件的变化并应用有限位移理论的功的互等定理,在导出上述两类变分原理的过程中起到了关键作用和桥梁作用.首先,考虑已知位移边界条件的变化和应用功的互等定理,导出了二类混合变量的最小势能原理.用类似的方法,导出了二类混合变量的驻值余能原理.应用应变能密度和应力余能密度的关系式于上述两个变分原理,得到三类混合变量的变分原理.然后,给出了二类和三类混合变量的虚功原理和虚余功原理.同时,应用拉氏乘子法导出了广义变分原理.以一个算例说明了在某些情况下拉氏乘子法会失效,介绍了构成广义变分原理泛函的半逆法.最后,应用二类混合变量最小势能原理计算了一大挠度悬臂梁的弯曲.
  • [1] Bernoulli J. New Mechanics or Statics [M]. 1725.
    [2] Lagrange J L. Mécanique Analytique [M]. 1788.
    [3] Love A E H, M A, Sc D, et al. The Mathematical Theory of Elasticity [M]. New York: McGraw-Hill Book Co, 1944.
    [4] Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. New York: McGraw-Hill Book Co,1970.
    [5] Washizu K. Variational Methods in Elasticity and Plasticity [M]. 2nd ed. Pergamon Press, 1975.
    [6] Castigliano A. Nuova teoria intorno dellequilibrio deisistrmi elastici[J]. Atti Acc Sci, Torino,1875.
    [7] 钱令希. 余能原理[J]. 中国科学, 1950,1: 449-456.(TSIEN Ling-hi. Complementary energy principle[J]. Scientia Sinica,1950,1: 449-456.(in Chinese))
    [8] Reissner E. On a variational theorem in elasticity[J]. Journal of Mathematics and Physics,1950,29(2): 90-95.
    [9] Reisser E. On variational principles in elasticity[C]//Proceeding of Symposia in Applied Mathematics . McGraw Hill, 1958,8: 1-6.
    [10] 胡海昌. 论弹性体力学与受范性体力学中的一般变分原理[J]. 物理学报, 1954,10(3): 259-290.(HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J]. Acta Physica Sinica,1954,10(3): 259-290.(in Chinese))
    [11] 钱伟长. 变分法及有限元法[M]. 科学出版社, 1980.(CHIEN Wei-zang. Variational Methods and Finite Element Methods [M]. Science Press, 1980.(in Chinese))
    [12] 钱伟长. 广义变分原理[M]. 上海: 知识出版社, 1985.(CHIEN Wei-zang. Generalized Variational Principles [M]. Shanghai: Knowledge Press, 1985.(in Chinese))
    [13] HE Ji-huan. Generalized equilibrium equations for shell derived from a generalized variational principle[J]. Applied Mathematics Letters,2017,64: 94-100.
    [14] Tonti E. Variational principles in elastostatics[J]. Mechanica,1967,4(2): 201-208.
    [15] 钱令希, 钟万勰. 论固体力学中的极限分析并建立一个一般的变分原理[J]. 力学学报, 1963,6(4): 287-303.(TSIEN Ling-hi, TSOON Wan-shia. The limit analysis in solid mechanics and a suggested generalized variational principle[J]. Acta Mechaniga Sinica,1963,6(4): 287-303.(in Chinese))
    [16] Фу Бао-Лянь. Об обобщенных вариационных принципах термоупругости[J].Scientia Sinica,1964,13(9): 1507-1509.(FU Bao-lian. On generalized variational principles of thermo elasticity[J]. Scientia Sinica,1964,13(9):1507-1509.(in Russia))
    [17] Reissner E. On a variational theorem for finite elastic deformations[J]. Studies in Applied Mathematics,1953,32(1/4): 129-135.
    [18] Truesdell C, Noll W.Non-linear Field Theories of Mechanics[M]. Springer, 1965.
    [19] Nemat-Nasser S. General variational principles in nonlinear and linear elasticity with applications[J]. Mechanics Today,1972,1: 214-261.
    [20] Levinson M. The complementary energy theorem in finite elasticity[J]. Journal of Applied Mechanics.,1965,32(4): 826-828.
    [21] Zubov L M. The stationary principle of complementary work in nonlinear theory of elasticity: PMM Vol 34,n=2,1970,pp: 241-245[J].Journal of Applied Mathematics and Mechanics,1970,34(2): 228-232.
    [22] Koiter W T. On the principle of stationary complementary energy in the nonlinear theory of elasticity[J].SIAM Journal on Applied Mathematics,1973,25(3): 424-434.
    [23] Koiter W T. On the complementary energy theorem in nonlinear elasticity theory[C]// Trends in Applications of Pure Mathematics to Mechanics, Conf Univ Lecce.Lecce, 1975: 207-232.
    [24] Fraeijs de Veubeke B. A new variational principle for finite elastic displacements[J].International Journal of Engineering Science, 1972,10(9):745-763.
    [25] Christoffersen J. On Zubov’s principle of stationary complementary energy and a related principle[R]. Rep No: 44, Danish Center for Appl Math and Mech, 1973.
    [26] Ogden R W. A note on variational theorems in non-linear elastostatics[J]. Math Proc Cambridge Philos Soc,1975,77: 609-615.
    [27] Dill E H. The complementary energy principle in nonlinear elasticity[J]. Lett Appl and Engng Sci,1977,5: 95-106.
    [28] Ogden R W. Inequalities associated with the inversion of elastic stress-deformation relations and their implications[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1977,81(2): 313-324.
    [29] Ogden R W. Extremum principles in non-linear elasticity and their application to composite-Ⅰ: theory[J]. International Journal of Solids and Structures,1978,14(4): 265-282.
    [30] 付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Bao-lian. The corrected reciprocal theorem of bending of thin plates and its application[J]. Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
    [31] 付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(5): 523-538.(FU Bao-lian. The corrected reciprocal theorem of three dimensional linear elasticity and its application[J]. Applied Mathematics and Mechanics,2015,36(5): 523-538.(in Chinese))
    [32] 付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(10): 1019- 1034.(FU Bao-lian. The reciprocal theorems for finite displacement theory and its application[J].Applied Mathematics and Mechanics,2015,36(10): 1019-1034.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  183
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-05
  • 修回日期:  2017-03-10
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回