[1] |
Bernoulli J. New Mechanics or Statics [M]. 1725.
|
[2] |
Lagrange J L. Mécanique Analytique [M]. 1788.
|
[3] |
Love A E H, M A, Sc D, et al. The Mathematical Theory of Elasticity [M]. New York: McGraw-Hill Book Co, 1944.
|
[4] |
Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. New York: McGraw-Hill Book Co,1970.
|
[5] |
Washizu K. Variational Methods in Elasticity and Plasticity [M]. 2nd ed. Pergamon Press, 1975.
|
[6] |
Castigliano A. Nuova teoria intorno dellequilibrio deisistrmi elastici[J]. Atti Acc Sci, Torino,1875.
|
[7] |
钱令希. 余能原理[J]. 中国科学, 1950,1: 449-456.(TSIEN Ling-hi. Complementary energy principle[J]. Scientia Sinica,1950,1: 449-456.(in Chinese))
|
[8] |
Reissner E. On a variational theorem in elasticity[J]. Journal of Mathematics and Physics,1950,29(2): 90-95.
|
[9] |
Reisser E. On variational principles in elasticity[C]//Proceeding of Symposia in Applied Mathematics . McGraw Hill, 1958,8: 1-6.
|
[10] |
胡海昌. 论弹性体力学与受范性体力学中的一般变分原理[J]. 物理学报, 1954,10(3): 259-290.(HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J]. Acta Physica Sinica,1954,10(3): 259-290.(in Chinese))
|
[11] |
钱伟长. 变分法及有限元法[M]. 科学出版社, 1980.(CHIEN Wei-zang. Variational Methods and Finite Element Methods [M]. Science Press, 1980.(in Chinese))
|
[12] |
钱伟长. 广义变分原理[M]. 上海: 知识出版社, 1985.(CHIEN Wei-zang. Generalized Variational Principles [M]. Shanghai: Knowledge Press, 1985.(in Chinese))
|
[13] |
HE Ji-huan. Generalized equilibrium equations for shell derived from a generalized variational principle[J]. Applied Mathematics Letters,2017,64: 94-100.
|
[14] |
Tonti E. Variational principles in elastostatics[J]. Mechanica,1967,4(2): 201-208.
|
[15] |
钱令希, 钟万勰. 论固体力学中的极限分析并建立一个一般的变分原理[J]. 力学学报, 1963,6(4): 287-303.(TSIEN Ling-hi, TSOON Wan-shia. The limit analysis in solid mechanics and a suggested generalized variational principle[J]. Acta Mechaniga Sinica,1963,6(4): 287-303.(in Chinese))
|
[16] |
Фу Бао-Лянь. Об обобщенных вариационных принципах термоупругости[J].Scientia Sinica,1964,13(9): 1507-1509.(FU Bao-lian. On generalized variational principles of thermo elasticity[J]. Scientia Sinica,1964,13(9):1507-1509.(in Russia))
|
[17] |
Reissner E. On a variational theorem for finite elastic deformations[J]. Studies in Applied Mathematics,1953,32(1/4): 129-135.
|
[18] |
Truesdell C, Noll W.Non-linear Field Theories of Mechanics[M]. Springer, 1965.
|
[19] |
Nemat-Nasser S. General variational principles in nonlinear and linear elasticity with applications[J]. Mechanics Today,1972,1: 214-261.
|
[20] |
Levinson M. The complementary energy theorem in finite elasticity[J]. Journal of Applied Mechanics.,1965,32(4): 826-828.
|
[21] |
Zubov L M. The stationary principle of complementary work in nonlinear theory of elasticity: PMM Vol 34,n=2,1970,pp: 241-245[J].Journal of Applied Mathematics and Mechanics,1970,34(2): 228-232.
|
[22] |
Koiter W T. On the principle of stationary complementary energy in the nonlinear theory of elasticity[J].SIAM Journal on Applied Mathematics,1973,25(3): 424-434.
|
[23] |
Koiter W T. On the complementary energy theorem in nonlinear elasticity theory[C]// Trends in Applications of Pure Mathematics to Mechanics, Conf Univ Lecce.Lecce, 1975: 207-232.
|
[24] |
Fraeijs de Veubeke B. A new variational principle for finite elastic displacements[J].International Journal of Engineering Science, 1972,10(9):745-763.
|
[25] |
Christoffersen J. On Zubov’s principle of stationary complementary energy and a related principle[R]. Rep No: 44, Danish Center for Appl Math and Mech, 1973.
|
[26] |
Ogden R W. A note on variational theorems in non-linear elastostatics[J]. Math Proc Cambridge Philos Soc,1975,77: 609-615.
|
[27] |
Dill E H. The complementary energy principle in nonlinear elasticity[J]. Lett Appl and Engng Sci,1977,5: 95-106.
|
[28] |
Ogden R W. Inequalities associated with the inversion of elastic stress-deformation relations and their implications[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1977,81(2): 313-324.
|
[29] |
Ogden R W. Extremum principles in non-linear elasticity and their application to composite-Ⅰ: theory[J]. International Journal of Solids and Structures,1978,14(4): 265-282.
|
[30] |
付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Bao-lian. The corrected reciprocal theorem of bending of thin plates and its application[J]. Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
|
[31] |
付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(5): 523-538.(FU Bao-lian. The corrected reciprocal theorem of three dimensional linear elasticity and its application[J]. Applied Mathematics and Mechanics,2015,36(5): 523-538.(in Chinese))
|
[32] |
付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(10): 1019- 1034.(FU Bao-lian. The reciprocal theorems for finite displacement theory and its application[J].Applied Mathematics and Mechanics,2015,36(10): 1019-1034.(in Chinese))
|