[1] |
Bernoulli J.New Mechanics or Statics[M]. 1725.
|
[2] |
Lagrange J L.Mécanique Analytique[M]. 1788.
|
[3] |
Love A E H, M A, Sc D, et al. The Mathematical Theory of Elasticity [M]. New York: McGraw-Hill Book Co, 1944.
|
[4] |
Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. New York: McGraw-Hill Book Co, 1970.
|
[5] |
Washizu K. Variational Methods in Elasticity and Plasticity [M]. 2nd ed. Pergamon Press, 1975.
|
[6] |
Castigliano A. Nuova teoria intorno dellequilibrio deisistrmi elastici[J]. Atti Acc Sci, Torino, 1875.
|
[7] |
钱令希. 余能原理[J]. 中国科学, 1950,1(2/4): 449-456.(TSIEN Ling-hi. Complementary energy principle[J]. Scientia Sinica,1950,1(2/4): 449-456.(in Chinese))
|
[8] |
Reissner E. On a variational theorem in elasticity[J].Journal of Mathematics and Physics,1950,29(2): 90-95.
|
[9] |
Reissner E. On variational principles in elasticity[C]//Proceeding of Symposia in Applied Mathematics . McGraw Hill, 1958,8: 1-6.
|
[10] |
胡海昌. 论弹性体力学与受范性体力学中的一般变分原理[J]. 物理学报, 1954,10(3): 259-290.(HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J]. Acta Physica Sinica,1954,10(3): 259-290.(in Chinese))
|
[11] |
钱伟长. 变分法及有限元法[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang. Variational Methods and Finite Element Methods [M]. Beijing: Science Press, 1980.(in Chinese))
|
[12] |
Tonti E. Variational principles in elastostatics[J]. Mechanica,1967,4(2): 201-208.
|
[13] |
何吉欢. 大位移非线弹性理论的广义变分原理[J]. 中国矿业大学学报, 1999,28(2): 136-138.(HE Ji-huan. Family of generalized variational principles for nonlinear elasticity with finite displacement[J]. Journal of China University of Mining & Technology,1999,〖STHZ〗 28(2): 136-138.(in Chinese))
|
[14] |
ФУ Бао-лянь. Обобобщенных вариационных принципах термоупругости[J]. Scientia Sinica,1964,13(9): 1507-1509.(FU Bao-lian. On generalized variational principles of thermo elasticity[J]. Scientia Sinica,1964,〖STHZ〗13 (9):1507-1509.(in Russia))
|
[15] |
付宝连. 有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用[J]. 应用数学和力学, 2017,38(11): 1251-1268.(FU Bao-lian. Variational principles for dual and triple mixed variables of linear elasticity with finite displacements and the application[J]. Applied Mathematics and Mechanics,2017,38(11): 1251-1268.(in Chinese))
|
[16] |
付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Bao-lian. The corrected reciprocal theorem of bending of thin plates and its application[J]. Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
|
[17] |
付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(5): 523-538.(FU Bao-lian. The corrected reciprocal theorem of three dimensional linear elasticity and its application[J]. Applied Mathematics and Mechanics,2015,36(5): 523-538.(in Chinese))
|
[18] |
付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(10): 1019-1034.(FU Bao-lian. The reciprocal theorems for finite displacement theory and its application[J]. Applied Mathematics and Mechanics,2015,36(10): 1019-1034.(in Chinese))
|
[19] |
Novozhilov V V. Foundations of the Nonlinear Theory of Elasticity [M]. New York: Graylook Press, 1955.
|
[20] |
付宝连. 弹性力学混合变量的变分原理及其应用[M]. 北京: 国防工业出版社, 2010.(FU Bao-lian. Variational Principles With Mixed Variables in Elasticity and Their Applications [M]. Beijing: National Defense Industry Press, 2010.(in Chinese))
|