留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限位移理论线弹性动力学二类和三类混合变量的最小势作用量原理和驻值余作用量原理及其应用

付宝连

付宝连. 有限位移理论线弹性动力学二类和三类混合变量的最小势作用量原理和驻值余作用量原理及其应用[J]. 应用数学和力学, 2017, 38(12): 1359-1376. doi: 10.21656/1000-0887.380005
引用本文: 付宝连. 有限位移理论线弹性动力学二类和三类混合变量的最小势作用量原理和驻值余作用量原理及其应用[J]. 应用数学和力学, 2017, 38(12): 1359-1376. doi: 10.21656/1000-0887.380005
FU Bao-lian. Principles of Minimum Potential Action and Stationary Complementary Action With Dual and Triple Mixed Variables for Linear Elastodynamics of Finite Displacement Theory and the Application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1359-1376. doi: 10.21656/1000-0887.380005
Citation: FU Bao-lian. Principles of Minimum Potential Action and Stationary Complementary Action With Dual and Triple Mixed Variables for Linear Elastodynamics of Finite Displacement Theory and the Application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1359-1376. doi: 10.21656/1000-0887.380005

有限位移理论线弹性动力学二类和三类混合变量的最小势作用量原理和驻值余作用量原理及其应用

doi: 10.21656/1000-0887.380005
详细信息
    作者简介:

    付宝连(1934—),男,教授(E-mail: ysufubaolian@163.com).

  • 中图分类号: O343

Principles of Minimum Potential Action and Stationary Complementary Action With Dual and Triple Mixed Variables for Linear Elastodynamics of Finite Displacement Theory and the Application

  • 摘要: 两个新的概念,即势作用量的概念和余作用量的概念被引入弹性动力学变分原理中.根据势作用量的概念,最小作用量原理(即Hamilton原理)被改称为最小势作用量原理.根据余作用量的概念,首次提出了驻值余作用量原理.考虑边界条件的变化并应用有限位移理论的功的互等定理,导出了以位移和应力为变分变量的二类混合变量的最小势作用量原理及驻值余作用量原理.应用应变势能密度与应力余能密度的关系式于上述二类混合变量作用量原理,导出了以位移、应力和应变为变分变量的三类混合变量的相关作用量原理.最后,应用拉氏乘子法给出了广义势作用量原理及广义余作用量原理,并且应用大挠度梁二类混合变量最小势作用量原理计算了一悬臂梁的受迫振动.
  • [1] Bernoulli J.New Mechanics or Statics[M]. 1725.
    [2] Lagrange J L.Mécanique Analytique[M]. 1788.
    [3] Love A E H, M A, Sc D, et al. The Mathematical Theory of Elasticity [M]. New York: McGraw-Hill Book Co, 1944.
    [4] Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. New York: McGraw-Hill Book Co, 1970.
    [5] Washizu K. Variational Methods in Elasticity and Plasticity [M]. 2nd ed. Pergamon Press, 1975.
    [6] Castigliano A. Nuova teoria intorno dellequilibrio deisistrmi elastici[J]. Atti Acc Sci, Torino, 1875.
    [7] 钱令希. 余能原理[J]. 中国科学, 1950,1(2/4): 449-456.(TSIEN Ling-hi. Complementary energy principle[J]. Scientia Sinica,1950,1(2/4): 449-456.(in Chinese))
    [8] Reissner E. On a variational theorem in elasticity[J].Journal of Mathematics and Physics,1950,29(2): 90-95.
    [9] Reissner E. On variational principles in elasticity[C]//Proceeding of Symposia in Applied Mathematics . McGraw Hill, 1958,8: 1-6.
    [10] 胡海昌. 论弹性体力学与受范性体力学中的一般变分原理[J]. 物理学报, 1954,10(3): 259-290.(HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J]. Acta Physica Sinica,1954,10(3): 259-290.(in Chinese))
    [11] 钱伟长. 变分法及有限元法[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang. Variational Methods and Finite Element Methods [M]. Beijing: Science Press, 1980.(in Chinese))
    [12] Tonti E. Variational principles in elastostatics[J]. Mechanica,1967,4(2): 201-208.
    [13] 何吉欢. 大位移非线弹性理论的广义变分原理[J]. 中国矿业大学学报, 1999,28(2): 136-138.(HE Ji-huan. Family of generalized variational principles for nonlinear elasticity with finite displacement[J]. Journal of China University of Mining & Technology,1999,〖STHZ〗 28(2): 136-138.(in Chinese))
    [14] ФУ Бао-лянь. Обобобщенных вариационных принципах термоупругости[J]. Scientia Sinica,1964,13(9): 1507-1509.(FU Bao-lian. On generalized variational principles of thermo elasticity[J]. Scientia Sinica,1964,〖STHZ〗13 (9):1507-1509.(in Russia))
    [15] 付宝连. 有限位移理论线弹性力学二类和三类混合变量的变分原理及其应用[J]. 应用数学和力学, 2017,38(11): 1251-1268.(FU Bao-lian. Variational principles for dual and triple mixed variables of linear elasticity with finite displacements and the application[J]. Applied Mathematics and Mechanics,2017,38(11): 1251-1268.(in Chinese))
    [16] 付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Bao-lian. The corrected reciprocal theorem of bending of thin plates and its application[J]. Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
    [17] 付宝连. 三维线弹性力学修正的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(5): 523-538.(FU Bao-lian. The corrected reciprocal theorem of three dimensional linear elasticity and its application[J]. Applied Mathematics and Mechanics,2015,36(5): 523-538.(in Chinese))
    [18] 付宝连. 有限位移理论的功的互等定理及其应用[J]. 应用数学和力学, 2015,36(10): 1019-1034.(FU Bao-lian. The reciprocal theorems for finite displacement theory and its application[J]. Applied Mathematics and Mechanics,2015,36(10): 1019-1034.(in Chinese))
    [19] Novozhilov V V. Foundations of the Nonlinear Theory of Elasticity [M]. New York: Graylook Press, 1955.
    [20] 付宝连. 弹性力学混合变量的变分原理及其应用[M]. 北京: 国防工业出版社, 2010.(FU Bao-lian. Variational Principles With Mixed Variables in Elasticity and Their Applications [M]. Beijing: National Defense Industry Press, 2010.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  144
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-05
  • 修回日期:  2017-05-13
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回