留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非光滑半无限多目标优化问题的最优性充分条件

杨玉红 李飞

杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
引用本文: 杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
Citation: YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012

非光滑半无限多目标优化问题的最优性充分条件

doi: 10.21656/1000-0887.380012
基金项目: 国家自然科学基金(11431004; 11601248)
详细信息
    作者简介:

    杨玉红(1979—), 女, 讲师, 博士生(通讯作者. E-mail: yhyang1020@163.com);李飞(1981—), 男, 讲师, 博士(E-mail: lifeimath@163.com).

  • 中图分类号: O221.6

Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems

Funds: The National Natural Science Foundation of China(11431004;11601248)
  • 摘要: 研究了一个非光滑半无限多目标优化问题(简记为SIMOP),并讨论了它的最优性条件.首先, 通过对目标函数和约束函数的某种组合赋予Clarke F-凸性假设, 获得了SIMOP(弱)有效解的最优性充分条件.接下来, 用Chankong-Haimes方法建立了此SIMOP的一个标量问题并得到了这个标量问题的最优性充分条件.
  • [1] Ehrgott M. Multicriteria Optimization [M]. 2nd ed. Berlin: Springer, 2005.
    [2] Jahn J. Vector Optimization: Theory, Applications, and Extensions [M]. 2nd ed. Berlin: Springer-Verlag, 2011.
    [3] 戎卫东, 杨新民. 向量优化及其若干进展[J]. 运筹学学报, 2014,18(1): 9-38.(RONG Wei-dong, YANG Xin-min. Vector optimization and its developments[J]. Operations Research Transactions,2014,18(1): 9-38.(in Chinese))
    [4] Goberna M A, López M A. Linear Semi-Infinite Optimization [M]. Chichester: John Wiley & Sons, 1998.
    [5] Reemtsen R, Rückmann J-J. Semi-Infinite Programming [M]. Dordrecht: Springer Science, 1998.
    [6] Caristi G, Ferrara M, Stefanescu A. Semi-infinite multiobjective programming with generalized invexity[J]. Mathematical Reports,2010,12(62): 217-233.
    [7] Glover B M, Jeyakumar V, Rubinov A M. Dual conditions characterizing optimality for convex multi-objective programs[J]. Mathematical Programming,1999,84(1): 201-217.
    [8] Chuong T D, Kim D S. Nonsmooth semi-infinite multiobjective optimization problems[J].Journal of Optimization Theory and Applications,2014,160(3): 748-762.
    [9] Chuong T D, Yao J C. Isolated and proper efficiencies in semi-infinite vector optimization problems[J]. Journal of Optimization Theory and Applications,2014,162(2): 447-462.
    [10] Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming[J]. Optimization Letters,2014,8(4): 1517-1528.
    [11] Kanzi N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data[J]. Optimization Letters,2015,9(6): 1121-1129.
    [12] Caristi G, Kanzi N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming[J]. International Journal of Mathematical Analysis,2015,9(39): 1929-1938.
    [13] Kanzi N. Karush-Kuhn-Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems[J]. Journal of Mathematical Extension,2015,9(4): 45-56.
    [14] Piao G R, Jiao L G, Kim D S. Optimality conditions in nonconvex semi-infinite multiobjective optimization[J]. Journal of Nonlinear and Convex Analysis,2016,17(1): 167-175.
    [15] Golestani M, Nobakhtian S. Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions[J]. Positivity,2013,17(3): 711-732.
    [16] Clarke F H. Optimization and Nonsmooth Analysis [M]. Philadelphia: SIAM, 1990.
    [17] Kanniapan P. Necessary conditions for optimality of nondifferentiable convex multiobjective programming[J]. Journal of Optimization Theory and Applications,1983,40(2): 167-174.
    [18] Hanson M A. On sufficiency of the Kuhn-Tucher conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
    [19] Craven D. Invex functions and constrained local minima[J]. Bulletin of the Australian Mathematical Society,1981,24(3): 357-366.
    [20] Hanson M A, Mond B. Further generalization of convexity in mathematical programming[J]. Journal of Information and Optimization Sciences,1982,3(1): 25-32.
    [21] Yang X M, Yang X Q, Teo K L. Generalized invexity and generalized invariant monotonicity[J]. Journal of Optimization Theory and Applications,2003,117(3): 607-625.
    [22] 彭再云, 汪达成. 强预不变凸函数的新性质及应用[J]. 重庆交通大学学报(自然科学版), 2008,27(5): 839-842.(PENG Zai-yun, WANG Da-cheng. New characteristics and application of strictly pre-invex functions[J]. Journal of Chongqing Jiaotong University(Natural Science),2008,27(5): 839-842.(in Chinese))
    [23] 彭再云, 李永红. 半严格- G -半预不变凸性与最优化[J]. 应用数学和力学, 2013,34(8): 836-845.(PENG Zai-yun, LI Yong-hong. Semistrict-G-semi-preinvexity and optimization[J].Applied Mathematics and Mechanics,2013,34(8): 836-845.(in Chinese))
    [24] Yang X M, Yang X Q, Teo K L, et al. Second order symmetric duality in non-differentiable multiobjective programming with F-convexity[J]. European Journal of Operational Research,2005,164(2): 406-416.
    [25] Goberna M A, Guerra-Vazquez F, Todorov M I. Constraint qualifications in convex vector semi-infinite optimization[J]. European Journal of Operational Research,2016,249(1): 32-40.
  • 加载中
计量
  • 文章访问数:  1373
  • HTML全文浏览量:  260
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-03-23
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回