留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类变时滞复数Cohen-Grossberg神经网络的动态行为分析

徐晓惠 宋乾坤 张继业 施继忠 赵玲

徐晓惠, 宋乾坤, 张继业, 施继忠, 赵玲. 一类变时滞复数Cohen-Grossberg神经网络的动态行为分析[J]. 应用数学和力学, 2017, 38(12): 1389-1398. doi: 10.21656/1000-0887.380015
引用本文: 徐晓惠, 宋乾坤, 张继业, 施继忠, 赵玲. 一类变时滞复数Cohen-Grossberg神经网络的动态行为分析[J]. 应用数学和力学, 2017, 38(12): 1389-1398. doi: 10.21656/1000-0887.380015
XU Xiao-hui, SONG Qian-kun, ZHANG Ji-ye, SHI Ji-zhong, ZHAO Ling.. Dynamical Behavior Analysis of a Class of Complex-Valued Neural Networks With Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1389-1398. doi: 10.21656/1000-0887.380015
Citation: XU Xiao-hui, SONG Qian-kun, ZHANG Ji-ye, SHI Ji-zhong, ZHAO Ling.. Dynamical Behavior Analysis of a Class of Complex-Valued Neural Networks With Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1389-1398. doi: 10.21656/1000-0887.380015

一类变时滞复数Cohen-Grossberg神经网络的动态行为分析

doi: 10.21656/1000-0887.380015
基金项目: 国家自然科学基金(11402214;51375402;11572264;61773004); 四川省青年科技创新研究团队(2017TD0035;2017TD0026;2015TD0021;2016HH0010); 四川省教育厅自然科学重点项目(17ZA0364); 浙江省自然科学基金(LY14E08006); 教育部“春晖计划”合作科研项目(Z2014075);重庆创新团队项目(CXTDX201601022)
详细信息
    作者简介:

    徐晓惠(1982—), 女, 副教授, 博士(E-mail: xhxu@163.com);宋乾坤(1963—), 男, 教授, 博士(通讯作者. E-mail: qiankunsong@163.com);张继业(1965—), 男, 教授, 博士(E-mail: jyzhang@home.swjtu.edu.cn);施继忠(1977—), 男, 讲师, 博士(E-mail: shijizhong@zjnu.cn);赵玲(1973—), 女, 副教授, 硕士(E-mail: zl1705@163.com).

  • 中图分类号: O175

Dynamical Behavior Analysis of a Class of Complex-Valued Neural Networks With Time-Varying Delays

Funds: The National Natural Science Foundation of China(11402214;51375402;11572264;61773004)
  • 摘要: 研究了一类具有变时滞的复数域Cohen-Grossberg神经网络平衡点的动态行为.在假定激活函数满足Lipschitz条件并且放大函数只满足具有下界的情况下, 利用M矩阵和同胚映射原理, 得到了确保该系统平衡点的存在性和唯一性的充分条件.基于矢量Lyapunov函数法和不等式技术, 得到了确保该系统平衡点的模指数稳定性的判据.该判据形式简单, 在实际应用时便于检验.该文所取得的研究成果推广了现有结论.最后通过给出一个数值算例和仿真结果验证了所得结论的正确性和可行性.
  • [1] Nitta T. Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters [M]. New York: Information Science Reference, 2009: 15-32.
    [2] JIANG Dan-chi. Complex-valued recurrent neural networks for global optimization of beamforming in multi-symbol MIMO communication systems[C]// Proceedings of International Conference on Conceptual Structurtion.Shanghai: Springer, 2008: 1-8.
    [3] HU Jin, WANG Jun. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(6): 853-864.
    [4] ZHANG Zi-ye, LIN Chong, CHEN Bing. Global stability criterion for delayed complex-valued recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(9): 1704-1708.
    [5] 徐晓惠, 张继业, 赵玲. 一类混合时滞复数域神经网络的动态行为分析[J]. 西南交通大学学报, 2014,49(3): 470-476.(XU Xiao-hui, ZHANG Ji-ye, ZHAO Ling. Dynamic behaviors analysis of a class of complex-valued neural networks with mixed delays[J]. Journal of Southwest Jiaotong University,2014,49(3): 470-476.(in Chinese))
    [6] XU Xiao-hui, ZHANG Ji-ye, SHI Ji-zhong. Dynamical behavior analysis of delayed complex-valued neural networks with impulsive effect[J]. International Journal of Systems Science,2017,48(4): 686-694.
    [7] 闫欢, 宋乾坤, 赵振江. 时间标度上时滞脉冲复数域神经网络的全局稳定性[J]. 应用数学和力学, 2015,36(11): 1191-1203.(YAN Huan, SONG Qian-kun, ZHAO Zhen-jiang. Global stability of impulsive complex-valued neural networks with time delay on scales[J]. Applied Mathematics and Mechanics,2015,36(11): 1191-1203.(in Chinese))
    [8] HUANG Yu-jiao, ZHANG Hua-guang, WANG Zhan-shan. Multistability of complex-valued recurrent neural networks with real-imaginary-type activation functions[J]. Applied Mathematics and Computation,2014,229: 187-200.
    [9] LIU Xi-wei. Synchronization of delayed complex-valued networks via aperiodically intermittent pinning control[C]//Proceeding of the 〖STBX〗2015 IEEE International Conference on Information and Automation . Lijiang, China, 2015: 1246-1251.
    [10] LI Xiao-di, Rakkiyappan R, Velmurugan G. Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays[J]. Information Sciences,2015,294: 645-665.
    [11] SONG Qian-kun, ZHANG Ji-ye. Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays[J].Nonlinear Analysis: Real World Applications,2008,9(2): 500-510.
    [12] LI Liang-liang, JIAN Ji-gui. Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays[J]. Journal of Computational and Applied Mathematics,2015,277(C): 23-35.
    [13] Tojtovska B, Jankovic S. On some stability problems of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays[J]. Applied Mathematics and Computation,2014,239: 211-226.
    [14] YANG Zhi-guo, HUANG Yu-mei. Exponential dissipativity of impulsive Cohen-Grossberg neural networks with mixed delays[J].Journal of Sichuan University(Natural Science Edition),2010,47(3): 464-468.
    [15] ZHANG Ji-ye, Suda Y, Komine H. Global exponential stability of Cohen-Grossberg neural networks with variable delays[J]. Physics Letters,2005,338(1): 44-50.
    [16] HU Jin, ZENG Chun-nan. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters[J].Neural Networks,2017,86: 90-101.
    [17] ZHANG Ji-ye. Global exponential stability of interval neural networks with variable delays[J]. Applied Mathematics Letters,2006,19(11): 1222-1227.
    [18] ZHAO Zhen-jiang, SONG Qian-kun. Stability of complex-valued Cohen-Grossberg neural networks with time-varying delays[C]//13th International Symposium on Neural Networks.Russia: Springer, 2016: 168-176.
  • 加载中
计量
  • 文章访问数:  1139
  • HTML全文浏览量:  164
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-11-02
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回