[1] |
OAKLEY J E, O’HAGAN A. Probabilistic sensitivity analysis of complex models: a Bayesian approach[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology),2004,66(3): 751-769.
|
[2] |
CHEN Wei, JIN Ruichen, SUDJIANTO A. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty[J]. Journal of Mechanical Design,2005,127(5): 875-886.
|
[3] |
ROHMER J, FOERSTER E. Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-process meta-modeling[J]. Computers & Geosciences,2011,37(7): 917-927.
|
[4] |
WAN Huaping, REN Weixin. Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process meta model[J]. Journal of Structural Engineering,2015,141(6): 04014164.
|
[5] |
WAN Huaping, REN Weixin. A residual-based Gaussian process model framework for finite element model updating[J]. Computers & Structures,2015,156: 149-159.
|
[6] |
WAN Huaping, REN Weixin. Stochastic model updating utilizing Bayesian approach and Gaussian process model[J]. Mechanical Systems and Signal Processing,2016,70/71: 245-268.
|
[7] |
WAN Huaping, TODD M D, REN Weixin. Statistical framework for sensitivity analysis of structural dynamic characteristics[J]. Journal of Engineering Mechanics,2017,143(9): 04017093.
|
[8] |
YAN Wangji, WAN Huaping, REN Weixin. Analytical local and global sensitivity of power spectrum density functions for structures subject to stochastic excitation[J]. Computers & Structures,2017,182: 325-336.
|
[9] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning [M]. The MIT Press, 2006.
|
[10] |
SANTNER T J, WILLIAMS B J, NOTZ W I.The Design and Analysis of Computer Experiments [M]. Berlin: Springer, 2003.
|
[11] |
EFRON B, STEIN C. The jackknife estimate of variance[J]. The Annals of Statistics,1981,9(3): 586-596.
|
[12] |
SOBOL I M. Sensitivity estimates for non-linear mathematical models[J].MMCE,1993,1(4): 407-414.
|
[13] |
TARANTOLA S, BECKER W, ZEITZ D. A comparison of two sampling methods for global sensitivity analysis[J]. Computer Physics Communications,2012,183(5): 1061-1072.
|