留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流变弹性体的力-磁耦合模型

李旭 万强 史平安

李旭, 万强, 史平安. 磁流变弹性体的力-磁耦合模型[J]. 应用数学和力学, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021
引用本文: 李旭, 万强, 史平安. 磁流变弹性体的力-磁耦合模型[J]. 应用数学和力学, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021
LI Xu, WAN Qiang, SHI Ping’an. A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers[J]. Applied Mathematics and Mechanics, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021
Citation: LI Xu, WAN Qiang, SHI Ping’an. A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers[J]. Applied Mathematics and Mechanics, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021

磁流变弹性体的力-磁耦合模型

doi: 10.21656/1000-0887.380021
基金项目: 国家自然科学基金(11372295)
详细信息
    作者简介:

    李旭(1990—),男,硕士生(E-mail: lixuchn@126.com);万强(1979—),男,研究员,硕士生导师(通讯作者. E-mail: wanzhenyu@126.com).

  • 中图分类号: TB381|O343

A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers

Funds: The National Natural Science Foundation of China(11372295)
  • 摘要: 以磁偶极子理论为基础,利用最小势能原理,从微观角度出发,研究了磁流变弹性体在单向载荷作用下的力磁耦合行为,提出了可以描述该行为的数学模型,分析了磁致应力非线性变化的规律和机理.该模型从磁流变弹性体的微观结构出发,考虑了所有铁磁颗粒的磁化特性,以及颗粒之间、链结构之间的相互作用,推导了磁相互作用能的表达式,采用MooneyRivlin模型给出了弹性势能表达式.最后运用最小势能原理,建立了描述磁流变弹性体在均匀磁场中力磁耦合行为的数学模型.该模型与实验结果吻合较好,并能从微观层面对磁流变弹性体的磁致应力变化规律做出解释.研究发现,磁流变弹性体的磁致应力在不同磁场下的变化规律不同,与材料内部的微结构紧密相关,铁磁颗粒之间及链结构之间的相互作用是导致磁致应力非线性变化的主要原因.
  • [1] JOLLY M R, CARLSON J D, MUOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials & Structures,1996,5(5): 607-614.
    [2] CHEN L, GONG X L, LI W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials & Structures,2007,16(6):2645-2650.
    [3] 许阳光, 龚兴龙, 万强, 等. 磁敏智能软材料及磁流变机理[J]. 力学进展, 2015,45: 461-495.(XU Yangguang, GONG Xinglong, WAN Qiang, et al. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics,2015,45: 461-495.(in Chinese))
    [4] LI W, KOSTIDIS K, ZHANG X, et al. Development of a force sensor working with MR elastomers[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Singapore, 2009: 233-238.
    [5] BEHROOZ M, WANG Xiaojie, GORDANINEJAD F. Performance of a new magnetorheological elastomer isolation system[J]. Smart Materials & Structures,2014,23(4): 045014. DOI: 10.1088/0964-1726/23/4/045014.
    [6] LIU T Y, HU S H, LIU K H, et al. Preparation and characterization of smart magnetic hydrogels and its use for drug release[J]. Journal of Magnetism and Magnetic Materials,2006,304(1): e397-e399.
    [7] OTTAVIANI R A, ULICNY J C, GOLDEN M A. Magnetorheological nanocomposite elastomer for releasable attachment applications: US 6877193 B2[P]. 2005-04-12.
    [8] ELKINS J. Oxidative stability in surface modified magnetorheological elastomers[D]. Master Thesis. Reno: University of Nevada, 2005.
    [9] SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science,1995,58(4): 787-792.
    [10] DAVIS L C. Model of magnetorheological elastomers[J]. Journal of Applied Physics,1999,85(6): 3348-3351.
    [11] VARGA Z, FILIPCSEI G, ZRNYI M. Magnetic field sensitive functional elastomers with tuneable elastic modulus[J]. Polymer,2005,47(1): 227-233.
    [12] MIKHAILOV V P, BAZINENKOV A M. Active vibration isolation platform on base of magnetorheological elastomers[J]. Journal of Magnetism and Magnetic Materials,2016,431: 266-268.
    [13] ROSENSWEIG B E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.
    [14] SHEN Y, GOLNARAGHI M F, HEPPLER G R. Experimental research and modeling of magnetorheological elastomers[J]. Journal of Intelligent Material Systems & Structures,2004,15(1): 27-35.
    [15] LIU Taixiang, GONG Xinglong, XU Yangguang, et al. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers[J]. Soft Matter, 2013,9(42): 10069-10080.
    [16] IVANEYKO D, TOSHCHEVIKOV V P, SAPHIANNIKOVAM, et al. Magneto-sensitive elastomers in a homogeneous magnetic field: a regular rectangular lattice model[J]. Macromolecular Theory & Simulations,2011,20(6): 411-424.
    [17] IVANEYKO D, TOSHCHEVIKOV V, BORIN D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: theory and experiment[J]. Macromolecular Symposia,2014,338(1): 96-107.
    [18] CHEN S W, LI R, ZHANG Z, et al. Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer[J]. Smart Structures & Systems,2016,25(3): 035001. DOI: 10.1088/0964-1726/25/3/035001.
    [19] BELLAN C, BOSSIS G. Field dependence of viscoelastic properties of MR elastomers[J]. International Journal of Modern Physics B,2002,16(17/18): 2447-2453.
    [20] LI Yancheng, LI Jianchun. A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling[J]. Journal of Vibration & Acoustics, 2014,137(1): V001T03A010. DOI: 10.1115/1.4027626.
    [21] HAN Yi, HONG Wei, FAIDLEY L E. Coupled magnetic field and viscoelasticity of ferrogel[J]. International Journal of Applied Mechanics,2011,3(2): 259-278.
    [22] DANAS K, KANKANALA S V, TRIANTAFYLLIDIS N. Experiments andmodeling of iron-particle-filled magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids,2012,60(1): 120-138.
    [23] GALIPEAU E, CASTAEDA P P. A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations[J]. Journal of the Mechanics & Physics of Solids,2013,61(4): 1065-1090.
    [24] NEDJAR B. A theory of finite strain magneto-poromechanics[J]. Journal of the Mechanics and Physics of Solids, 2015,84: 293-312.
    [25] 孙书蕾, 毛建良, 彭雄奇. 考虑纤维弯曲刚度的橡胶-帘线复合材料各向异性超弹性本构模型[J]. 应用数学和力学, 2014,35(5): 471-477.(SUN Shulei, MAO Jianliang, PENG Xiongqi. An anisotropic hyperelastic constitutive model with fiber bending stiffness for cord-rubber composites[J]. Applied Mathematics and Mechanics,2014,35(5): 471-477.(in Chinese))
    [26] 郭怡诚. 铁磁学[M]. 北京: 北京大学出版社, 2014.(GUO Yicheng. Ferromagnetism [M]. Beijing: Peking University Press, 2014.(in Chinese))
    [27] VICENTE J, BOSSIS G, LACIS S, et al. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions[J]. Journal of Magnetism and Magnetic Materials,2002,251(1): 100-108.
    [28] 胡友秋, 程福臻, 叶邦角. 电磁学与电动力学[M]. 北京: 科学出版社, 2013.(HU Youqiu, CHENG Fuzhen, YE Bangjiao.Electromagnetics and Electrodynamics[M]. Beijing: Science Press, 2013.(in Chinese))
    [29] QIN Qinghua, YANG Qingsheng. Macro-Micro Theory on Multi-Field Coupling Behavior of Heterogeneous Materials [M]. Beijing: Higher Education Press, 2008.
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  163
  • PDF下载量:  1415
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-04-03
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回