留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑媒体播报效应的双时滞传染病模型

廖书 杨炜明

廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025
引用本文: 廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025
LIAO Shu, YANG Wei-ming. An Epidemic Model With Dual Delays in View of Media Coverage[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025
Citation: LIAO Shu, YANG Wei-ming. An Epidemic Model With Dual Delays in View of Media Coverage[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025

考虑媒体播报效应的双时滞传染病模型

doi: 10.21656/1000-0887.380025
基金项目: 国家自然科学基金(11401059);重庆市科委基金(cstc2015jcyjA00024;cstc2015jcyjAX0067);重庆市教委科学技术研究项目(KJ1600610;KJ1706163)
详细信息
    作者简介:

    廖书(1980—), 女, 博士(通讯作者. E-mail: shuyang2011@yahoo.com);杨炜明(1981—), 男, 博士(E-mail: ywmctbu@gmail.com).

  • 中图分类号: O175.13

An Epidemic Model With Dual Delays in View of Media Coverage

Funds: The National Natural Science Foundation of China(11401059)
  • 摘要: 在疾病控制过程中, 媒体的重要性举足轻重.该文旨在建立并分析一个含有媒体效应的多时滞传染病模型, 研究模型的稳定性, 并通过分析相应特征方程根, 分别研究在时滞不同的5种情况下, 系统的稳定性发生变化, 以及产生Hopf分支的条件.再利用持续性理论, 证明模型的持续生存性.最后将时滞模型研究结果应用于苏格兰小儿肺炎中, 验证媒体效应对疫情控制起到的重要作用以及时滞大小对模型稳定性的影响.
  • [1] Liu R S, Wu J H, Zhu H P. Media/psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methods in Medicine, 2007,8(3):153-164.
    [2] Misra A K, Sharma A, Shukla J B. Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases[J]. Mathematical and Computer Modeling,2011,53(5/6): 1221-1228.
    [3] Cui J A, Sun Y H, Zhu H P. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations,2007,20(1): 31-53.
    [4] Collinson S, Khan K, Heffernan J M. The effects of media reports on disease spread and important public health measurements[J]. PLoS ONE,2015,10(11): 1-21.
    [5] Misra A K, Sharma A, Singh V. Effect of awareness programs in controlling the prevalence of an epidemic with time delay[J]. Journal of Biological Systems,2011,19(2): 389-402.
    [6] 刘玉英, 肖燕妮. 一类受媒体影响的传染病模型的研究[J]. 应用数学和力学, 2013,34(4): 399-407.( LIU Yu-ying, XIAO Yan-ni. An epidemic model with saturated media/psychological impact[J]. Applied Mathematics and Mechanics,2013,34(4): 399-407. (in Chinese))
    [7] Sun C, Yang W, Arinoa J, et al. Effect of media induced social distancing on disease transmission in a two patch setting[J]. Mathematical Biosciences,2011,230(2): 87-95.
    [8] 张素霞, 周义仓. 考虑媒体作用的传染病模型的分析与控制[J]. 工程数学学报, 2013,30(3): 416-426.(ZHANG Su-xia, ZHOU Yi-cang. Analysis and control of an epidemic model with media influence[J]. Chinese Journal of Engineering Mathematics,2013,30(3): 416-426. (in Chinese))
    [9] Greenhalgh D, Rana S, Samanta S, et al. Awareness programs control infectious disease-multiple delay induced mathematical model[J]. Applied Mathematics and Computation,2015,251: 539-563.
    [10] Olowokure B, Odedere O, Elliot A J, et al. Volume of print media coverage and diagnostic testing for influenza A(H1N1)pdm09 virus during the early phase of the pandemic[J]. Journal of Clinical Virology,2012,55(1): 75-78.
    [11] Tchuenche J M, Bauch C T. Dynamics of an infectious disease where media coverage influences transmission[J]. ISRN Biomath,2012,2012(1). doi: 10.5402/2012/581274.
    [12] Funk S, Jansen V A. The talk of the town: modelling the spread of information and changes in behaviour[M]// Manfredi P, D’Onofrio A, ed. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases.New York: Springer, 2012: 93-102.
    [13] Liu W. A SIRS epidemic model incorporating media coverage with random perturbation[J]. Abstract and Applied Analysis,2013,2013(2): 764-787.
    [14] Freedman H I, So J W H. Global stability and persistence of simple food chains[J]. Mathematical Biosciences,1985,76(1): 69-86.
    [15] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1/2): 29-48.
    [16] Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [M]. Mathematics and Its Applications.Vol74. Dordrecht: Springer, 1992.
    [17] Hale J K. Theory of Functional Differential Equations [M]. Applied Mathematical Sciences. Vol3. New York: Spring-Verlag, 1977.
    [18] Hale J K, Waltman P. Persistence in infinite-dimensional system[J]. SIAM Journal on Mathematical Analysis,1989,20(2): 388-396.
    [19] Lamb K E, Greenhalgh D, Robertson C. A simple mathematical model for genetic effects in pneumococcal carriage and transmission[J]. Journal of Computational & Applied Mathematics,2011,235(7): 1812-1818.
    [20] Zhang Q, Arnaoutakis K, Murdoch C, et al. Mucosal immune responses to capsular pneumococcal polysaccharides in immunized preschool children and controls with similar nasal pneumococcal colonization rates[J]. Pediatric Infectious Disease Journal,2004,23(4): 307-313.
  • 加载中
计量
  • 文章访问数:  1273
  • HTML全文浏览量:  193
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-19
  • 修回日期:  2017-04-23
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回