留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬挂点匀速转动时摆锤圆周运动的存在性与稳定性分析

李舒航 蒋方华

李舒航, 蒋方华. 悬挂点匀速转动时摆锤圆周运动的存在性与稳定性分析[J]. 应用数学和力学, 2018, 39(2): 183-198. doi: 10.21656/1000-0887.380028
引用本文: 李舒航, 蒋方华. 悬挂点匀速转动时摆锤圆周运动的存在性与稳定性分析[J]. 应用数学和力学, 2018, 39(2): 183-198. doi: 10.21656/1000-0887.380028
LI Shuhang, JIANG Fanghua. Existence and Stability Analysis on Circular Motion of Pendulums With Uniformly Rotating Pivots[J]. Applied Mathematics and Mechanics, 2018, 39(2): 183-198. doi: 10.21656/1000-0887.380028
Citation: LI Shuhang, JIANG Fanghua. Existence and Stability Analysis on Circular Motion of Pendulums With Uniformly Rotating Pivots[J]. Applied Mathematics and Mechanics, 2018, 39(2): 183-198. doi: 10.21656/1000-0887.380028

悬挂点匀速转动时摆锤圆周运动的存在性与稳定性分析

doi: 10.21656/1000-0887.380028
详细信息
    作者简介:

    李舒航(1998—),男(E-mail: lishu.h@foxmail.com);蒋方华(1982—),男,副教授,博士,博士生导师(通讯作者. E-mail: jiangfh@tsinghua.edu.cn).

  • 中图分类号: O317

Existence and Stability Analysis on Circular Motion of Pendulums With Uniformly Rotating Pivots

  • 摘要: 悬挂点水平匀速转动时摆锤的圆周运动及其稳定性问题很少被研究,其中蕴含丰富的动力学现象.首先,考虑摆锤在真空和线性阻尼的介质中运动的情况,建立摆锤的动力学方程.其次,将摆锤水平圆周运动的特解的存在性问题转化为四次多项式的求根问题,通过Descartes(笛卡尔)符号规则及多项式函数的单调性分析,得出了摆的物理参数与特解个数的对应关系,真空中的特解可能是0,1,2个,在介质中时,只能是1个或3个.再次,基于Lyapunov(李雅普诺夫)一次近似理论考察非线性稳定性问题.将运动微分方程在特解附近线性化,特解的稳定性问题通过线性微分方程特征根实部的符号来判断.将涉及的四次特征方程巧妙地转化为二次方程,得出真空中特解线性意义下稳定的条件,以及介质中线性意义下渐近稳定的条件.最后,通过数值仿真,验证和明确了理论分析的结论.
  • [1] PERIG A V, STADNIK A N, DERIGLAZOV A I, et al. 3 DOF spherical pendulum oscillations with a uniform slewing pivot center and a small angle assumption[J]. Shock and Vibration,2014,2014: 203709.
    [2] ALEVRAS P, BROWN I, YURCHENKO D. Experimental investigation of a rotating parametric pendulum[J]. Nonlinear Dynamics,2015,81(1/2): 201-213.
    [3] KHOLOSTOVA O V. Some problems of the motion of a pendulum when there are horizontal vibrations of the point of suspension[J]. PMM Journal of Applied Mathematics and Mechanics,1995,59(4): 553-561.
    [4] NPRSTEK J, FISCHER C. Types and stability of quasi-periodic response of a spherical pendulum[J]. Computers and Structures,2013,124: 74-87.
    [5] JIA Ji, WU Ye, LIU Weiqing, et al. Experimental study on amplitude-frequency characteristic and basin stability of horizontally driven pendulum[J]. Journal of Theoretical and Applied Mechanics,2016,54(3): 839-846.
    [6] VAN DOOREN R. Chaos in a pendulum with forced horizontal support motion[J]. Chaos, Solitons & Fractals,1996,7(1): 77-90.
    [7] ACHESON D J, MULLIN T. Upside-down pendulums[J]. Nature,1993,366(6452): 215-216.
    [8] YOON M G. Dynamics and stabilization of a spherical inverted pendulum on a wheeled cart[J]. International Journal of Control, Automation, and Systems,2010,8(6): 1271-1279.
    [9] SOTO I, CAMPA R. Modelling and control of a spherical inverted pendulum on a five-bar mechanism[J]. International Journal of Advanced Robotic Systems,2015,12(7). DOI: 10.5772/60027.
    [10] XU Xu, WIERCIGROCH M, CARTMELL M P. Rotating orbits of a parametrically-excited pendulum[J]. Chaos, Solitons & Fractals,2005,23(5): 1537-1548.
    [11] PAVLOVSKAIA E, HORTON B, WIERCIGROCH M. Approximate rotational solutions of pendulum under combined vertical and horizontal excitation[J]. International Journal of Bifurcation and Chaos,2012,22(5): 1250100.
    [12] JR GRANDY W T, SCHCK M. Simulations of nonlinear pivot-driven pendula[J]. American Journal of Physics,1997,65(5): 376-381.
    [13] BELYAKOV A O. On rotational solutions for elliptically excited pendulum[J]. Physics Letters A,2011,375(25): 2524-2530.
    [14] HORTON B, SIEBER J, THOMPSON J M T, et al. Dynamics of the nearly parametric pendulum[J]. International Journal of Non-Linear Mechanics,2011,46(2): 436-442.
    [15] 刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001.(LIU Yanzhu. Advanced Dynamics [M]. Beijing: Higher Education Press, 2001.(in Chinese))
    [16] 数学手册编写组. 数学手册[M]. 北京: 高等教育出版社, 1979.(Mathematics Handbook Compilation Group. Mathematics Handbook [M]. Beijing: Higher Education Press, 1979.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1609
  • HTML全文浏览量:  151
  • PDF下载量:  995
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-25
  • 修回日期:  2017-03-24
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回