[1] |
PERIG A V, STADNIK A N, DERIGLAZOV A I, et al. 3 DOF spherical pendulum oscillations with a uniform slewing pivot center and a small angle assumption[J]. Shock and Vibration,2014,2014: 203709.
|
[2] |
ALEVRAS P, BROWN I, YURCHENKO D. Experimental investigation of a rotating parametric pendulum[J]. Nonlinear Dynamics,2015,81(1/2): 201-213.
|
[3] |
KHOLOSTOVA O V. Some problems of the motion of a pendulum when there are horizontal vibrations of the point of suspension[J]. PMM Journal of Applied Mathematics and Mechanics,1995,59(4): 553-561.
|
[4] |
NPRSTEK J, FISCHER C. Types and stability of quasi-periodic response of a spherical pendulum[J]. Computers and Structures,2013,124: 74-87.
|
[5] |
JIA Ji, WU Ye, LIU Weiqing, et al. Experimental study on amplitude-frequency characteristic and basin stability of horizontally driven pendulum[J]. Journal of Theoretical and Applied Mechanics,2016,54(3): 839-846.
|
[6] |
VAN DOOREN R. Chaos in a pendulum with forced horizontal support motion[J]. Chaos, Solitons & Fractals,1996,7(1): 77-90.
|
[7] |
ACHESON D J, MULLIN T. Upside-down pendulums[J]. Nature,1993,366(6452): 215-216.
|
[8] |
YOON M G. Dynamics and stabilization of a spherical inverted pendulum on a wheeled cart[J]. International Journal of Control, Automation, and Systems,2010,8(6): 1271-1279.
|
[9] |
SOTO I, CAMPA R. Modelling and control of a spherical inverted pendulum on a five-bar mechanism[J]. International Journal of Advanced Robotic Systems,2015,12(7). DOI: 10.5772/60027.
|
[10] |
XU Xu, WIERCIGROCH M, CARTMELL M P. Rotating orbits of a parametrically-excited pendulum[J]. Chaos, Solitons & Fractals,2005,23(5): 1537-1548.
|
[11] |
PAVLOVSKAIA E, HORTON B, WIERCIGROCH M. Approximate rotational solutions of pendulum under combined vertical and horizontal excitation[J]. International Journal of Bifurcation and Chaos,2012,22(5): 1250100.
|
[12] |
JR GRANDY W T, SCHCK M. Simulations of nonlinear pivot-driven pendula[J]. American Journal of Physics,1997,65(5): 376-381.
|
[13] |
BELYAKOV A O. On rotational solutions for elliptically excited pendulum[J]. Physics Letters A,2011,375(25): 2524-2530.
|
[14] |
HORTON B, SIEBER J, THOMPSON J M T, et al. Dynamics of the nearly parametric pendulum[J]. International Journal of Non-Linear Mechanics,2011,46(2): 436-442.
|
[15] |
刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001.(LIU Yanzhu. Advanced Dynamics [M]. Beijing: Higher Education Press, 2001.(in Chinese))
|
[16] |
数学手册编写组. 数学手册[M]. 北京: 高等教育出版社, 1979.(Mathematics Handbook Compilation Group. Mathematics Handbook [M]. Beijing: Higher Education Press, 1979.(in Chinese))
|