留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寨卡病毒传播潜力与控制策略有效性分析

范琳烜 唐三一

范琳烜, 唐三一. 寨卡病毒传播潜力与控制策略有效性分析[J]. 应用数学和力学, 2017, 38(11): 1269-1278. doi: 10.21656/1000-0887.380031
引用本文: 范琳烜, 唐三一. 寨卡病毒传播潜力与控制策略有效性分析[J]. 应用数学和力学, 2017, 38(11): 1269-1278. doi: 10.21656/1000-0887.380031
FAN Lin-xuan, TANG San-yi. Analysis on Transmission Potential and Control Strategies of Zika Virus[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1269-1278. doi: 10.21656/1000-0887.380031
Citation: FAN Lin-xuan, TANG San-yi. Analysis on Transmission Potential and Control Strategies of Zika Virus[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1269-1278. doi: 10.21656/1000-0887.380031

寨卡病毒传播潜力与控制策略有效性分析

doi: 10.21656/1000-0887.380031
基金项目: 国家自然科学基金(11471201;11631012)
详细信息
    作者简介:

    范琳烜(1992—),女,硕士(E-mail: linxuanfan1992@163.com);唐三一(1970—),男,教授(通讯作者. E-mail: sytang@snnu.edu.cn).

  • 中图分类号: O213

Analysis on Transmission Potential and Control Strategies of Zika Virus

Funds: The National Natural Science Foundation of China(11471201;11631012)
  • 摘要: 目前寨卡病毒已在超过65个国家和地区传播, 为了估计新加坡寨卡病毒的传播潜力和有关控制策略的有效性, 首先采用经典的传染病模型并结合累计报告病例数, 借助最小二乘法和MCMC方法进行模型参数估计, 寻求拟合累计病例数最佳的参数集合及其相应的置信区间.进而根据再生矩阵法求得的基本再生数公式,得到了新加坡寨卡爆发的阈值参数R0的估计值和置信区间, 通过对比分析验证了新加坡寨卡病毒传播基本再生数的可靠性.之后, 分析了累计病例数对各个关键参数的敏感性, 探讨针对寨卡病毒传播控制策略的有效性.结果表明: 在对新加坡寨卡病毒的控制中, 需要通过增加检疫次数和检疫率、对患者进行隔离以及有效地灭蚊, 并且通过减少疫区的游客数量达到控制疫情的效果.
  • [1] Guzzetta G, Poletti P, Montarsi F, et al. Assessing the potential risk of Zika virus epidemics in temperate areas with established Aedes albopictus populations[J]. Euro Surveillance,2016,21(15). doi: 10.2807/1560-7917.ES.2016.21.15.30199.
    [2] Nishiura H, Kinoshita R, Mizumoto K, et al. Transmission potential of Zika virus infection in the South Pacific[J]. International Journal of Infectious Diseases,2016,45: 95-97.
    [3] Pinho S T, Ferreira C P, Esteva L, et al. Modelling the dynamics of dengue real epidemics[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2010,368(1933): 5679-5693.
    [4] 唐三一, 肖燕妮. 单种群生物动力系统[M]. 北京: 科学出版社, 2008.(TANG San-yi, XIAO Yan-ni. The Dynamical System of the Single Population [M]. Beijing: Science Press, 2008.(in Chinese))
    [5] 肖燕妮, 周义仓, 唐三一. 生物数学原理[M]. 西安: 西安交通大学出版社, 2012.(XIAO Yan-ni, ZHOU Yi-cang, TANG San-yi. The Principle of Biomathematics [M]. Xi’an: Xi’an Jiaotong University Press, 2012.(in Chinese))
    [6] TANG San-yi, XIAO Yan-ni, YANG You-ping, et al. Community-based measures for mitigating the 2009 H1N1 pandemic in China[J]. PLoS One,2010,5(6): e10911. doi: 10.1371/journal.pone.0010911.
    [7] 何艳辉, 唐三一. 经典SIR模型辨识和参数估计问题[J]. 应用数学和力学, 2013,34(3): 252-258.(HE Yan-hui, TANG San-yi. Identification and parameter estimation for classical SIR model[J]. Applied Mathematics and Mechanics,2013,34(3): 252-258.(in Chinese))
    [8] Poletti P, Messeri G, Ajelli M, et al. Transmission potential of Chikungunya virus and control measures: the case of Italy[J].PLoS One,2011,6(5): e18860. doi: 10.1371/journal.pone.0018860.
    [9] Delatte H, Gimonneau G, Triboire A, et al. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes Albopictus, Vector of Chikungunya and Dengue in the Indian Ocean[J]. Journal of Medical Entomology,2011,46(1): 33-41.
    [10] van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1/2): 29-48.
    [11] Shah N H, Gupta J. SEIR model and simulation for Vector Borne Diseases[J]. Applied Mathematics,2013,4(8): 13-17.
    [12] Nishiura H, Chowell G, Heesterbeek H, et al. The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course[J]. Journal of the Royal Society Interface,2010,7(43): 297-307.
    [13] Duffy M R, Chen T H, Hancock W T, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia[J]. The New England Journal of Medicine,2009,360(24): 2536-2543.
    [14] TANG San-yi, XIAO Yan-ni, YUAN Lin, et al. Campus quarantine (Fengxiao) for curbing emergent infectious diseases: lessons from mitigating A/H1N1 in Xi’an, China[J]. Journal of Theoretical Biology,2011,295: 47-58.
    [15] YAN Qin-ling, TANG San-yi, Gabriele S, et al. Media coverage and hospital notifications: correlation analysis and optimal media impact duration to manage a pandemic[J]. Journal of Theoretical Biology,2015,390. doi: 10.1016/j.jtbi.2015.11.002.
    [16] Smith D L, Battle K E, Hay S I, et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens[J]. PLoS Pathogens,2012,8(4): e1002588. doi: 10.1371/journal.ppat.1002588.
    [17] 胡晓虎, 唐三一. 血管外给药的非线性房室模型解的逼近[J]. 应用数学和力学, 2014,35(9): 1033-1045.(HU Xiao-hu, TANG San-yi. Approximate solutions to the nonlinear compartmental model for extravascular administration[J]. Applied Mathematics and Mechanics,2014,35(9): 1033-1045.
    [18] GAO Dao-zhou, LOU Yi-jun, HE Dai-hai, et al. Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis[J]. Scientific Reports,2016,6: 28070. doi: 10.1038/srep28070.
    [19] Kucharski A J, Funk S, Eggo R M, et al. Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013—14 French Polynesia outbreak[J]. PLoS Neglected Tropical Diseases,2016,10(5): e0004726. doi: 10.1371/journal.pntd.0004726.
  • 加载中
计量
  • 文章访问数:  1302
  • HTML全文浏览量:  148
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-09
  • 修回日期:  2017-02-20
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回