[1] |
ICHISE M, NAGAYANAGI Y, KOJIMA T. An analog simulation of non-integer order transfer functions for analysis of electrode processes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1971,33(2): 253-265.
|
[2] |
COLE K S. Electric conductance of biological systems[J]. Cold Spring Harbor Symposia on Quantitative Biology,1933,1: 107-116.
|
[3] |
ZHUANG P, LIU F. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematic and Computing,2006,22(3): 87-99.
|
[4] |
JIANG Yingjun, MA Jingtang. High-order finite element methods for time-fractional partial differential equations[J]. Journal of Computational and Applied Mathematics,2011,235(11): 3285-3290.
|
[5] |
LIN Yumin, XU Chuanjun. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of Computational Physics,2007,225(2): 1533-1552.
|
[6] |
MUSTAPHA K, ABDALLAH B, FURATI K M, et al. A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients[J]. Numerical Algorithms,2016,73(2): 517-534.
|
[7] |
YASEEN M, ABBAS M, ISMAIL A I, et al. A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations[J]. Applied Mathematics and Computation,2017,293: 311-319.
|
[8] |
CUI Ming-rong. Compact finite difference method for the fractional diffusion equation[J]. Journal of Computational Physics,2009,228(20): 7792-7804.
|
[9] |
LIU Q, GU Y T, ZHUANG P, et al. An implicit RBF meshless approach for time fractional diffusion equations[J]. Computational Mechanics,2011,48(1): 1-12.
|
[10] |
IZADKHAH M M, SABERI-NADJAFI J. Gegenbauer spectral method for time-fractional convection-diffusion equations with variable coefficients[J]. Mathematical Methods in the Applied Sciences,2015,38(15): 3183-3194.
|
[11] |
SAADATMANDI A, DEHGHAN M, AZIZI M-R. The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(11): 4125-4136.
|
[12] |
GHANDEHARI M A M, RANJBAR M. A numerical method for solving a fractional partial differential equation through converting it into an NLP problem[J]. Computers & Mathematics With Applications,2013,65(7): 975-982.
|
[13] |
CHEN Y M, WU Y B, CUI Y H, et al. Wavelet method for a class of fractional convection-diffusion equation with variable coefficients[J]. Journal of Computational Science,2010,1(3): 146-149.
|
[14] |
BHRAWY A H, ZAKY M. A fractional-order Jacobi Tau method for a class of time-fractional PDEs with variable coefficients[J]. Mathematical Methods in the Applied Sciences,2016,39(7): 1765-1779.
|
[15] |
NEMATI S, SEDAGHAT S. Matrix method based on the second kind Chebyshev polynomials for solving time fractional diffusion-wave equations[J]. Journal of Applied Mathematics and Computing,2016,51(1/2): 189-207.
|
[16] |
DOHA E H, BHRAWY A H, EZZ-ELDIEN S S. An efficient Legendre spectral Tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations[J]. Journal of Computational and Nonlinear Dynamics,2015,10(2): 021019. DOI: 10.1115/1.4027944.
|
[17] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006.
|
[18] |
Boyd J P. Chebyshev and Fourier Spectral Methods [M]. Mineola: Dover Publications Inc, 2001.
|
[19] |
PANG Guofei, CHEN Wen, FU Zhoujia. Space-fractional advection—dispersion equations by the Kansa method[J].Journal of Computational Physics,2015,293: 280-296.
|
[20] |
ELHAY S, KAUTSKY J. Algorithm 655: IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures[J]. ACM Transactions on Mathematical Software,1987,13(4): 399-415.
|
[21] |
GAUTSCHI W. High-order Gauss-Lobatto formulae[J]. Numerical Algorithms,2000,25(1): 213-222.
|